

City of Parker
5700 E. Parker Road
Parker, Texas 75002

2024 Drinking Water Quality Report

Jan. 1– Dec. 31, 2024

PWS ID #0430045

PARTICIPATION OPPORTUNITIES

DATE: 1st and 3rd Tuesday every month

TIME: 7:00 PM

LOCATION
PARKER CITY HALL
5700 East Parker Road

PHONE
972-442-6811 City Hall
972-442-4105

City of Parker is Purchased Surface Water

OUR DRINKING WATER IS REGULATED

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

Source of Drinking Water

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive materials, and can pick up substances resulting from the presence of animals or human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, which can be natural-occurring or results from urban storm water runoff, industrial or domestic wastewater discharges, oil, and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-product of industrial processes and petroleum production, and can also come from gas station, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or result of oil and gas production and mining activities.

SPECIAL NOTICE
Required Language for ALL
community
public water supplies:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium in drinking water. Infants, some elderly or Immuno-compromised person such as those undergoing chemotherapy for cancer; those who have undergone organ transplants, those who are undergoing treatment with steroids; and people with HIV / AIDS or other immune systems disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the **SAFE DRINKING WATER HOT-LINE (800-426-4791)**

Where do we get our drinking water?

Our drinking water is purchased from NTMWD and the water source is: **Lake Lavon**

The **TCEQ** has completed a Source Water Assessment for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The system from which we purchase our water received the assessment report. For more information on source water assessment and protection efforts at our system, contact North Texas Municipal Water District (NTMWD) Bobbi Bryan at (972) 442-5405

SW FROM NORTH TEXAS MWD

430044

The information will describe the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment will allow us and/or the system from which we receive water to focus on source water protection strategies. Further details about sources and source water assessment information are available in Drinking Water Watch at <http://dww.tceq.texas.gov/DWW>.

Additional Health Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from minerals and components associated with lines and home plumbing. We are responsible for providing high quality drinking water, but can not control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. For information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

About the Following Pages

The pages that follow list all of the federally regulated or monitored constituents which have been found in your drinking water. U.S. EPA requires water systems to test up to 97 constituents.

Outdoors

- *One inch of water per week in the summer will keep most Texas grasses healthy*
- *Don't abuse the benefits of an automatic sprinkler system by over watering*
- *To prevent evaporation, water early in the morning or in the evening*
- *Don't waste water by cleaning patios and sidewalks with it; use a broom*
- *Keep grasses at least 3 inches tall during the summer, this will help hold moisture and leave lawn clippings on the lawn instead of bagging*
- *Check hoses and sprinkler heads often for leaks*
- *Switch from sprinklers to soaker hoses around foundation and in the garden*
- *Use mulch to retain moisture in the soil and reduces weeds*
- *Fit hoses with a sprayer and shut off device to control flow*

A Source Water Susceptibility Assessment for your drinking water source is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that comes in contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies.

For more information about your sources of water, please refer to the Source Water Assessment Viewer at the following URL:

<http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc=>

Further details about sources and source-water assessments are available in the Drinking Water Watch at the following URL:

<http://dww.tceq.texas.gov/DWW>

En Espanol

Este informe incluye informacion importante sobre el agua para tomar. Para assistencia en espanol, favor de llamar al telefono

(972) 442-6811

You can play a role in water conservation and save yourself money in the process by becoming conscious of the amount of water your household uses and trying to conserve on landscaping.

The City of Parker Water Department takes pride in delivering safe quality drinking water to our customers. We are constantly upgrading our system to provide the best service possible.

Water Conservation Tips

Indoors

- Run the dishwasher only when full
- Run washing machine only when full
- Never use toilet to dispose of trash
- Take shorter showers
- Check toilets and faucets for leaks
- Turn off water when shaving
- Turn water off while brushing teeth
- Use garbage disposals sparingly
- Avoid running faucets while cleaning dishes
- When possible replace showerheads, toilets, washing machines, dishwashers, faucets with High-Efficiency Products.

Questions or Concerns?
If you have any questions regarding your drinking water please contact .
Gary Machado
972-442-6811
gmachado@parkertexas.us

ALL drinking water may contain contaminants

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA'S Safe Drinking Water Hotline (800-426-4791).

In order to ensure that tap water is safe to drink , EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottle water which must provide the same protection for public health.

Contaminants may be found in drinking water that cause taste, color, or odor problems. These types of problems are not necessarily cause for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

DEFINITIONS: The following tables contain scientific terms and measures, some of which may require explanation.

Maximum Contaminant Level (MCL)- The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) – The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

NTU- Nephelometric Turbidity Units (a measure of turbidity)

MFL- million fibers per liter (a measure of asbestos)

pCi/l- picocuries per liter (a measure of radioactivity)

ppm- parts per million, or milligrams per liter (mg/l) or one ounce in 7,350 gallons of water

ppb- parts per billion, or micrograms per liter (ug/l) or one ounce in 7,350,000 gallons of water

ppt- parts per trillion, or nanograms per liter (ng/L)

ppq-parts per quadrillion, or picogram per liter.(pg/L)

Avg- Regulatory compliance with some MCLs are based on running annual averages of monthly samples

Na- not applicable

MFL-million fibers per liter

Mrem: millirems per year (a measure of radiation absorbed by the body)

Level 1 assessment: A level 1 assessment is a study of the water to identify potential problem and determine (if Possible) why total coliform bacteria have been found in our system.

Level 2 assessment: A level 2 assessment is a very detailed study of the water to identify potential problem and determine (if Possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our drinking water system on multiple occasions.

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample	0	0	0	No	Naturally present in the environment.

NOTE: Reported monthly tests found no fecal coliform bacteria. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, bacteria may be present.

Regulated Contaminants

Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (HAA5)	2024	23	13.8-27.7	No goal for the total	60	ppb	No	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2024	39	25.9-47.5	No goal for the total	80	ppb	No	By-product of drinking water disinfection.
Bromate	2024	0	0—0	5	10	ppb	No	By-product of drinking water ozonation.

NOTE: Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance sampling should occur in the future. TCEQ only requires one sample annually for compliance testing. For Bromate, compliance is based on the running annual average.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2024	Levels lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2024	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2024	0.06	0.04-0.06	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2024	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries.
Cadmium	2024	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2024	1.3	1.3-1.3	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2024	128	28.5-128	0—0	200	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer factories.
Fluoride	2024	0.712	0.316-0.712	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2024	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2024	0.926	0.0592-0.926	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.

Selenium	2024	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2024	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore-processing sites; drug factories.

Nitrate Advisory: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2024	5.3	5.3-5.3	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2024	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2024	Levels lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.
Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2024	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2022	Levels lower than detect level	0 - 0	1	3	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfone	2022	Levels lower than detect level	0 - 0	1	2	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfoxide	2022	Levels lower than detect level	0 - 0	1	4	ppb	No	Runoff from agricultural pesticide.
Atrazine	2024	0.1	0.1 - 0.1	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2024	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.

Dalapon	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2024	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2024	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2022	Levels lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2022	Levels lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2024	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2022	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleum refineries.
Heptachlor	2024	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2024	Levels lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2024	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadiene	2024	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2024	Levels lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2024	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
Oxamyl [Vydate]	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2022	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2022	Levels lower than detect level	0 - 0	500	500	ppb	No	Herbicide runoff.
Simazine	2024	0.071	0.071-0.071	4	4	ppb	No	Herbicide runoff.
Toxaphene	2024	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1, 1, 1 - Trichloroethane	2024	Levels lower than detect level	0 - 0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloroethane	2024	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2024	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2024	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.

Benzene	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2024	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2024	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2024	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2024	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2024	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2024	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2024	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2024	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2024	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dichloroethylene	2024	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.

Turbidity

	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	1 NTU	0.4 NTU	No	Soil runoff.
Lowest monthly percentage (%) meeting limit	0.3 NTU	99.50%	No	Soil runoff.
NOTE: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration.				

Maximum Residual Disinfectant Level

Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Highest Result of Single Sample	MRDL	MRDLG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2024	2.52	1.10	3.60	4.00	<4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2024	0.027	0	0.82	0.80	0.80	ppm	Disinfectant.
Chlorite	2024	0.187	0	0.95	1.00	N/A	ppm	Disinfectant.

NOTE: Water providers are required to maintain a minimum chlorine disinfection residual level of 0.5 parts per million (ppm) for systems disinfecting with chloramines and an annual average chlorine disinfection residual level of between 0.5 (ppm) and 4 parts per million (ppm).

Total Organic Carbon

	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Source Water	2024	0	0	ppm	Naturally present in the environment.
Drinking Water	2024	0	0	ppm	Naturally present in the environment.
Removal Ratio	2024	0	0	ppm	Naturally present in the environment

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set

Cryptosporidium and Giardia

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Cryptosporidium	2024	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste.
Giardia	2024	0.18	0.09 - 0.18	(Oo) Cysts/L	Human and animal fecal waste.

Lead and Copper

Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Lead	2024	15	1.67	1	ppb	N	Corrosion of household plumbing systems; erosion of natural deposits.
Copper	2024	1.3	1.2	1	ppm	N	Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.

ADDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. **[Customer]** is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

Form 20943 Service Line Inventory Form for Public Water Systems is available for review by contacting Gary Machado at 469-853-8678 or gmachado@parkertexas.us

Unregulated Contaminants

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Chloroform	2024	15.0 ug/L	6.10-15.0 ug/L	ppb	By-product of drinking water disinfection.
Bromoform	2024	5.16 ug/L	1.76-5.16 ug/L	ppb	By-product of drinking water disinfection.
Bromodichloromethane	2024	16.3 ug/L	9.27-16.3 ug/L	ppb	By-product of drinking water disinfection.
Dibromochloromethane	2024	10.9 ug/L	5.16-10.9 ug/L	ppb	By-product of drinking water disinfection.

NOTE: Bromoform, chloroform, bromodichloromethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals at the entry point to distribution.

Secondary and Other Constituents Not Regulated

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Aluminum	2024	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.
Calcium	2024	66.5	35.4-66.5	ppm	Abundant naturally occurring element.
Chloride	2024	95.3	15.4-95.3	ppm	Abundant naturally occurring element; used in water purification; by-product of oil field activity.
Iron	2024	Levels lower than detect level	0-0	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
Magnesium	2024	9.84	5.88-9.84	ppm	Abundant naturally occurring element.
Manganese	2024	0.082	0.029-0.082	ppm	Abundant naturally occurring element.
Nickel	2024	0.0067	0.0048-0.0067	ppm	Erosion of natural deposits.
pH	2024	8.9	7.4-8.9	units	Measure of corrosivity of water.
Silver	2024	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.
Sodium	2024	88.7	35.5-88.7	ppm	Erosion of natural deposits; by-product of oil field activity.
Sulfate	2024	165	39.6-165	ppm	Naturally occurring; common industrial by-product; by-product of oil field activity.
Total Alkalinity as CaCO ₃	2024	128	56.5-128	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Solids	2024	509	271-509	ppm	Total dissolved mineral constituents in water.
Total Hardness as CaCO ₃	2024	202	105-202	ppm	Naturally occurring calcium.
Zinc	2024	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring element used in the metal industry.

Unregulated Contaminant Monitoring Rule (UCMR5)

PWSs are required to report UCMR results in the CCR when unregulated contaminants are found (i.e., measured at or above minimum reporting levels [MRLs]), and must report the average and range of the monitoring results for the report year. Additionally, PWSs are required to notify customers through Tier 3 Public Notification (PN) about the availability of all UCMR results no later than 12 months after they are known by the PWS. If timing and delivery requirements are met, systems may include their PN within the CCR, also known as annual drinking water quality report. EPA has resources for PWSs available on the CCR and PN Compliance help webpages.

Contaminants	Collection Date	Average Level	Range of Levels Detected	MRL	Units	Likely Source of Contamination
Perfluorobutanesulfonic acid	2024	0.0038	0.0038-0.0038	0.003	ppb	Fire training/fighting industrial sites landfills
Perfluorobutanoic acid	2024	0.0065	0.0051-0.0101	0.005	ppb	Fire training/fighting industrial sites landfills
Perfluorohexanoic acid	2024	0.0042	0.0031-0.0058	0.003	ppb	Fire training/fighting industrial sites landfills
Perfluoropentanoic acid	2024	0.0046	0.0036-0.0064	0.003	ppb	Fire training/fighting industrial sites landfills